

E-SERIES SCREW JACKS

POWERJACKS

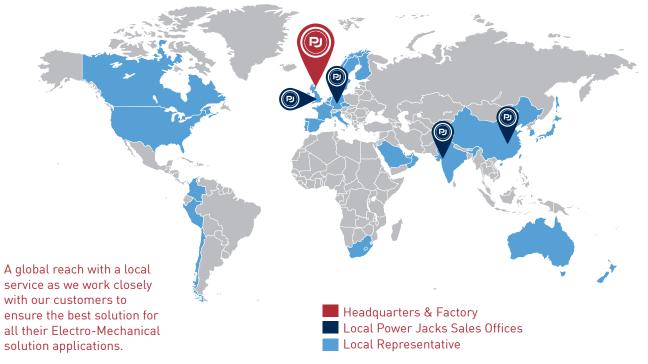
Best engineered solution for precision linear actuation, power transmission & jacking systems.

Capability

OUR EXPERTISE HAS BEEN BUILT ON A HISTORY OF MORE THAN 100 YEARS OF ENGINEERING, CRAFTSMANSHIP, VISIONARY DESIGN, QUALITY MANUFACTURE AND CUSTOMER CARE.

Power Jacks is a manufacturing/engineering company specialising in the design and manufacture of actuation, lifting and positioning solutions for applications in Industrial Automation, Energy, Defence, Medical, Transport, and the Civil Engineering sectors.

Headquartered near Aberdeen in the UK, the company is the UK's largest screw jack manufacturing facility, that uses the latest engineering technologies to deliver quality products (BS EN ISO 9001) that offer reliability, performance and economy.


Power Jacks deliver this high quality service in a safe (OHSAS 18001) and environmentally friendly (ISO 14001) working environment thanks to the highly trained, flexible and motivated teams that work throughout the business driving the company to higher levels of performance.

We know our customers demand our engineering expertise to help find a solution for their applications. We take pride in designing and delivering the best solution using standard or special designs that help improve your business.

Our Vision is to become the partner of choice for our products globally Our Mission is to provide high quality lifting & positioning solutions.

Global Reach

Power Jacks has local representation in 26 countries and supplies its products to more than 80 countries worldwide.

Contents

POWERJACKS

1. Introduction

Compare Screw Jack Sizes	4
Translating Screw Jack Building System	6
Rotating Screw Jack Building System	7
Jacking Systems	8
Screw Jack Product Code	
Selecting a Screw Jack	14

2. E-Series - Machine Screw Jack	18
Features	19
Application Focus	22
Performance	24
E-Series Translating Machine Screw Jack 5kN	26
E-Series Rotating Machine Screw Jack 5kN	27
E-Series Translating Machine Screw Jack 10kN	28
E-Series Rotating Machine Screw Jack 10kN	29
E-Series Translating Machine Screw Jack 25kN	30
E-Series Rotating Machine Screw Jack 25kN	31
E-Series Translating Machine Screw Jack 50kN	32
E-Series Rotating Machine Screw Jack 50kN	33
E-Series Translating Machine Screw Jack 100kN	34
E-Series Rotating Machine Screw Jack 100kN	35
E-Series Translating Machine Screw Jack 200kN	36
E-Series Rotating Machine Screw Jack 200kN	37
E-Series Translating Machine Screw Jack 300kN	38
E-Series Rotating Machine Screw Jack 300kN	39
E-Series Translating Machine Screw Jack 500kN	40
E-Series Rotating Machine Screw Jack 500kN	41
E-Series Translating Machine Screw Jack 1000kN	42
E-Series Rotating Machine Screw Jack 1000kN	43
E-Series Translating Machine Screw Jack 1500kN	44
E-Series Rotating Machine Screw Jack 1500kN	45
E-Series Translating Machine Screw Jack 2000kN	46
E-Series Rotating Machine Screw Jack 2000kN	47
Variants	49
Anti-Backlash	50
Anti-Rotation (Keyed)	52
Anti-Backlash & Anti-Rotation (Keyed)	54
Safety Nuts	56
Double Hub Nut for Rotating Screw Jacks	58
Double Clevis Screw Jacks	59

3. E-Series - Stainless Steel Screw Jacks	60
Features	61
Application Focus	64
Performance	65
E-Series Translating Stainless Steel Screw Jack 10kN	66
E-Series Rotating Stainless Steel Screw Jack 10kN	67
E-Series Translating Stainless Steel Screw Jack 25kN	68
E-Series Rotating Stainless Steel Screw Jack 25kN	69
E-Series Translating Stainless Steel Screw Jack 50kN	70
E-Series Rotating Stainless Steel Screw Jack 50kN	71
E-Series Translating Stainless Steel Screw Jack 100kN	72
E-Series Rotating Stainless Steel Screw Jack 100kN	73
E-Series Translating Stainless Steel Screw Jack 200kN	74

E-Series Rotating Stainless Steel Screw Jack 200kN	75
E-Series Translating Stainless Steel Screw Jack 300kN	76
E-Series Rotating Stainless Steel Screw Jack 300kN	77
E-Series Translating Stainless Steel Screw Jack 500kN	78
E-Series Rotating Stainless Steel Screw Jack 500kN	79
E-Series Translating Stainless Steel Screw Jack 1000kN	80
E-Series Rotating Stainless Steel Screw Jacks 1000kN	81
Variants	83
Anti-Backlash	84
Anti-Rotation (Keyed)	86
Anti-Backlash & Anti-Rotation (Keyed)	88
Safety Nut	90
Double Hub Nut for Rotating Screw Jacks	91
Double Clevis Screw Jack	93

4. E-Series - Ball Screw Jack......94 E-Series Translating Ball Screw Jack 10kN102 E-Series Translating Ball Screw Jack 25kN104 E-Series Rotating Ball Screw Jack 25kN105 E-Series Translating Ball Screw Jack 50kN106 E-Series Rotating Ball Screw Jack 50kN107 E-Series Translating Ball Screw Jack 100kN108 E-Series Rotating Ball Screw Jack 100kN109 E-Series Translating Ball Screw Jack 200kN110 E-Series Rotating Ball Screw Jack 200kN111 E-Series Translating Ball Screw Jack 300kN112 E-Series Rotating Ball Screw Jack 300kN113

5. E-Series - Roller Screw Jack	. 118
Features	.119

6. E-Series - Screw Jack Accessories	
End Fittings	124
Machine Screw Jack Bellow Boots	126
Upright Machine Screw Jack Bellows Boots	127
Inverted Machine Screw Jack Bellows Boots	128
Ball Screw Jack Bellows Boots	129
Upright Ball Screw Jack Bellows Boots	130
Inverted Ball Screw Jack Bellows Boots	131
Stop Nuts & Hand Wheels	132
Trunnion Mounts	133
Motor Adapter	137
Limit Switches on Cover Pipe	138
Rotary Limit Switch - RLS	139

Contents

POWERJACKS

7. Screw Jack Special Design	140
Custom Design Process	141
Special Design Examples	142
U-Series Subsea Screw Jacks	144
Application Focus	146

8. Engineering Guide	148
Screw Jack Performance	149
Machine Screw Jack Column Strength Charts	150
Ball Screw Jack Column Strength Charts	154
Critical Screw Speed Charts	155
Screw Jack Key Torque	156
Side Load Rating	157
Radial Loads on Screw Jack Worm Shaft	158
Axial Backlash Ratings	159
Lateral Movement Ratings	160
Operation	161
Calculation Formulae	167

TRYOUR **3DCAD** PORTAL

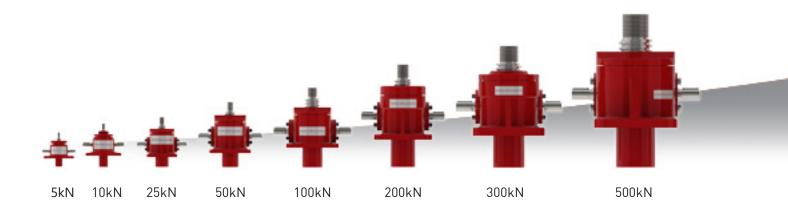
e)

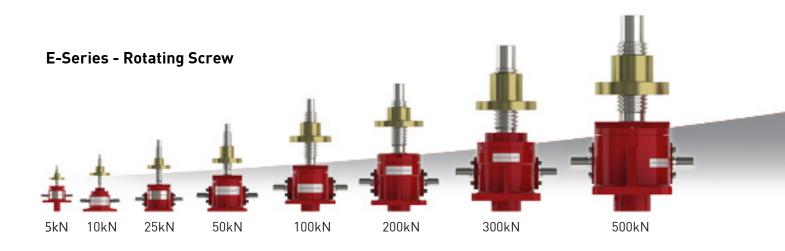
.....

POWERJACKS

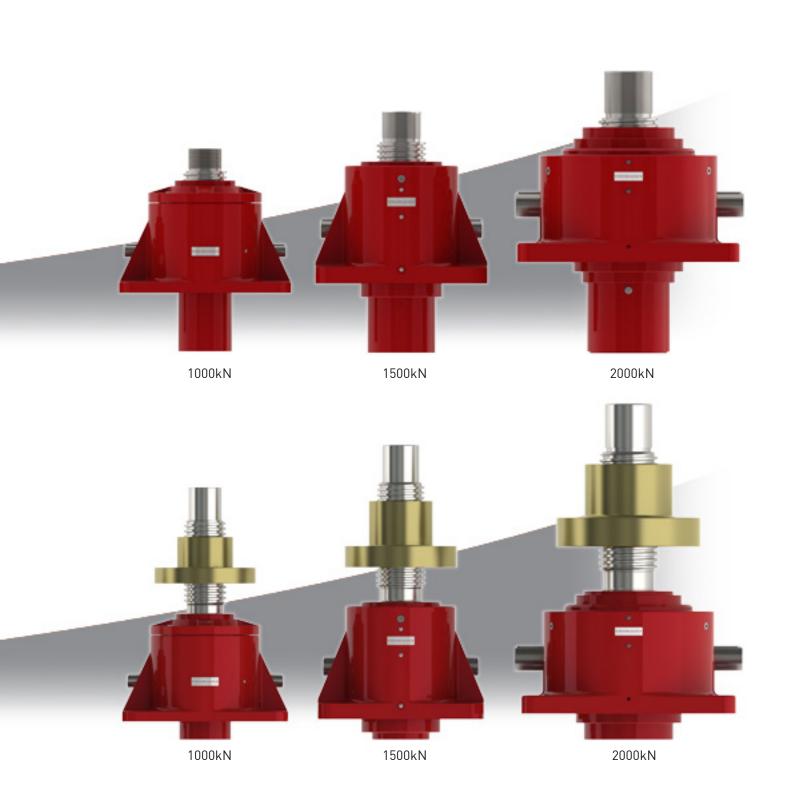
POWERJ

Enginaaring CAD Con

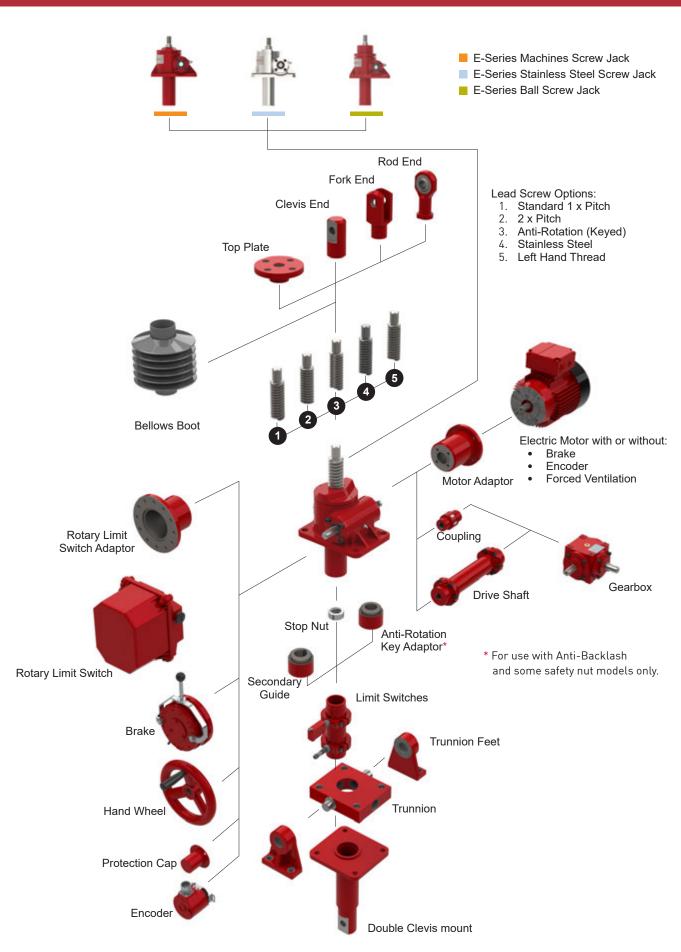

00


Engineering: CAD Configur

- 2D CAD Drawings
- 3D CAD Models
- Dimensioned Data Sheet



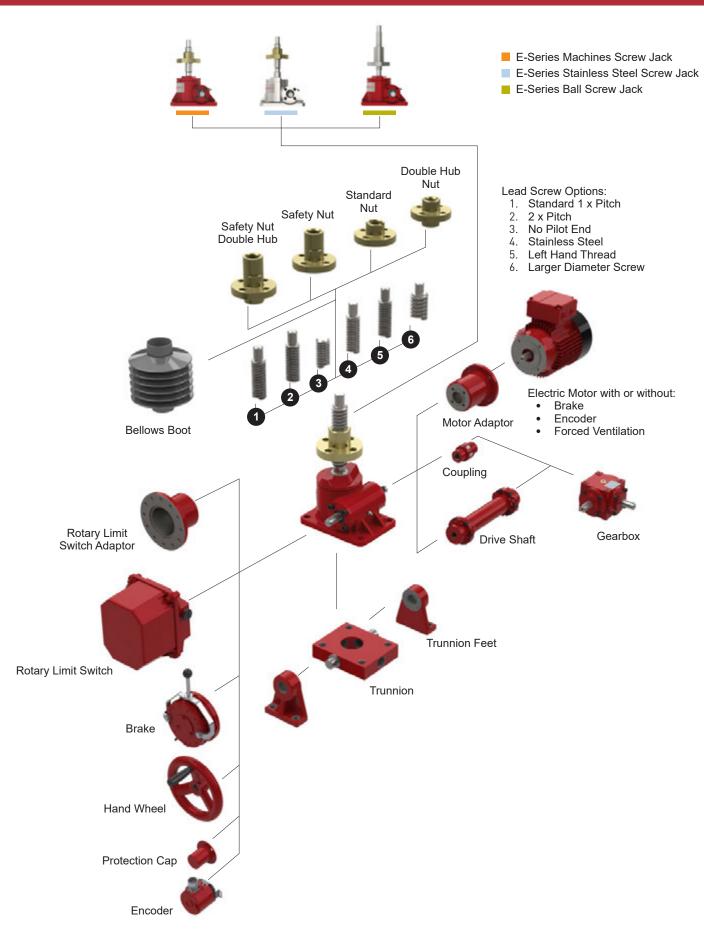
E-Series - Translating Screw



Introduction

8 Translating Screw Jack Building System

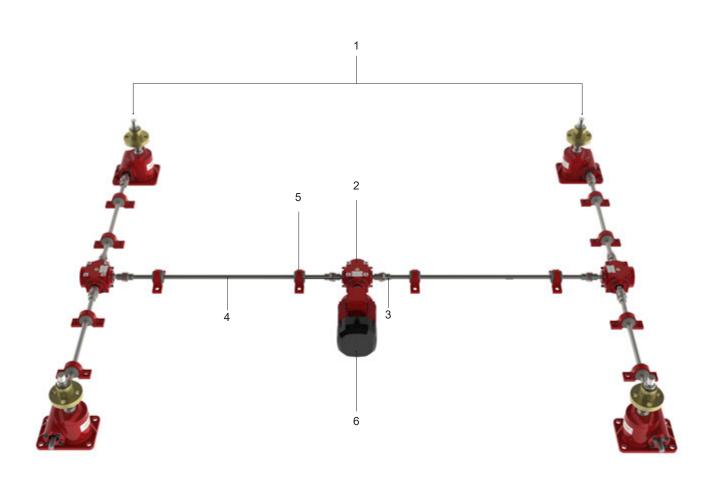
POWERJACKS



Special Screw Jacks Design Available when you need more than the standard solution.

Introduction

Rotating Screw Jack Building



Special Screw Jacks Design Available when you need more than the standard solution.

Screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearboxes, drive shafts, couplings, plummer blocks and motion control devices.

Four of the most popular system configurations are the 'H', 'U', 'T' and 'I' configured jacking systems. Note that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.

Typical 'H' configuration System

- 1. Screw Jack
- E-Series Rotating Machine Screw Jack shown here.
- 2. Bevel Gearbox
- Range-N Spiral Bevel Gearboxes
- 3. Flexible Coupling
- A range of couplings are available to suit each systems requirements including Jaw, Spacer and Geared types.
- 4. Drive Shaft

Every drive shaft is manufactured to order for each system design. Self supporting drive shafts (spacer couplings) are also available.

- 5. Shaft Supports (plummer blocks).
- 6. Electric Motor

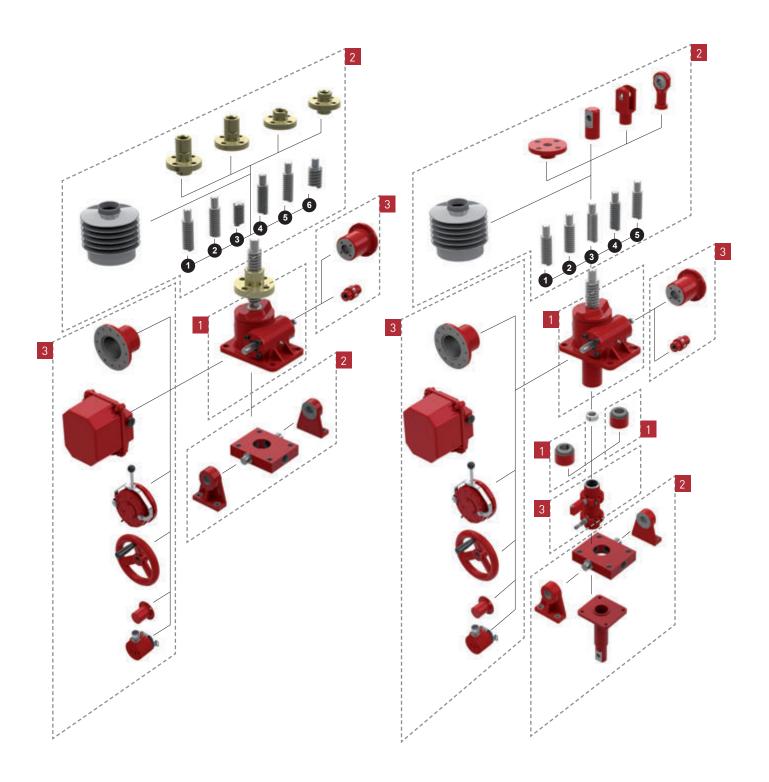
Standard electric motors in 3 phase, 1 phase, DC and servo designs. Supplied as a basic motor or as part of a geared motor. Brakes are available for all motors.

Jacking systems are not limited to the number of screw jacks shown here. They are regularly supplied to clients with 2, 4, 6, 8 jack systems. Larger systems can extend up to 16 or higher. With the use of electronic synchronisation/control multiple systems or screw jacks can be used in unison. Extending the possible number of screw jacks used in unison in excess of 100.

To facilitate electronic control of screw jacks, feedback devices (eg encoder, limit switch) are available, mounted on the screw jack or its motor or another system component.

'U' Configuration System

'l' Configuration System



- POWERJACKS

1 GROUP-1 - Screw Jack Gearbox Definition

2 GROUP-2 - Screw Jack Features

3 GROUP-3 - Accessories

Introduction

1 GROUP-1 - Screw Jack Gearbox Definition

1	-Screw Jack Series		2 -	2 - Screw Type 3- Screw Configuration								
E	Series		М	Machine Scre	ew			R	Rotatin	g Screw		
			В	Ball Screw				Т	Transla	ting Screw		
_							,					

kN 5 10 25 50 100 200 300 500 1000 1500 200	4-7	′ - Capacity	0005	0010	0025	0050	0100	0200	0300	0500	1000	1500	2000
	kN		5	10		50	100	200	300	500	1000	1500	2000

12 - Gear Ratio

1

A B Option 1 Ratio

Option 2 Ratio

8 - Character Space

9-Gearbox Type					
U	Upright				
I	Inverted				
V	Upright - All Stainless Steel Screw Jack #16				
J	Inverted - All Stainless Steel Screw Jack #16				

10 - Gearbox Feature - 1					
0	None				
К	Anti-Rotation (Keyed)				
С	Secondary Guide				
E	Anti-Rotation (keyed) with Secondary Guide				
Н	Double Hub Nut #1, #12				
Т	Trunnion Nut				
U	Trunnion Nut with Feet				

11 - Gearbox Feature - 2				
0	None			
А	Anti-Backlash (this option is zero backlash for ball screws)			
В	Anti-Backlash with wear monitor - Visual			
С	Anti-Backlash with wear monitor - Sensor			
R	Safety Nut Tension			
S	Safety Nut Compression			
Т	Safety Nut Tension with Wear Monitor - visual			
U	Safety Nut Compression with wear monitor - visual			
V	Safety Nut Tension with Wear Monitor - Sensor			
W	Safety Nut Compression with wear monitor - Sensor			

13 - Lifting Screw Lead				
1	Option 1 Lead - Right Hand (Standard) #4			
2	Option 2 Lead - Right Hand ^{#4}			
А	Option 1 Lead - Left Hand ^{#5}			
В	Option 2 Lead - Left Hand ^{#5}			

Option 1 Ratio with gear rotation monitor $^{\#12}$

Option 2 Ratio with gear rotation monitor $^{\#12}$

14 - Worm Shaft Type #16		
0	Standard Material	
N	Nickel Plated Worm Shaft	
S	Stainless Steel Worm Shaft	

15 - Worm Shaft Ends				
0	Both			
L	Left Hand Only			
R	Right Hand Only			
Х	Both with Protective Cap on LHS #11			
Y	Both with Protective Cap on RHS #11			

16 - Character Space

4 Screw Jack Product Code

GROUP-2 - Screw Jack Features

17-20 - Stroke	0000
Stroke in mm	0-9999

21 - Character Space

3

22 - End Type #16 #17				
E	Threaded End			
С	Clevis End			
Т	Top Plate			
F	Fork End (standard available up to 200KN)			
R	Rod End (standard available up to 200KN)			
J	Plain End			
Р	Pilot End #1			
N	No Pilot End #1			

23 - Gearbox Mounting		
В	Base Mount	
С	Second Clevis on Cover Pipe Standard #6 #9	
E	Second Clevis on Cover Pipe 90 degree #9	
Т	Trunnion Mount Standard #2	
U	T + Trunnion Feet	
Х	Trunnion Mount 90 degree #3	
Y	X + Trunnion Feet	

24 - Lifting Screw Material #16				
0) Standard			
S	Stainless Steel			
М	Standard with Low Friction Coating (Molycote)			
А	A Standard with Protective Coating (Armaloy)			

25 - Lifting Screw Covers				
0	Cover Pipe & No Bellows Boot #15			
В	Cover Pipe & Fabric Bellows Boot #9			
F	Fabric Bellows Boot x 2 - Rotating Screw			
R	Cover Pipe & Rubber Bellows Boot #9			
S	Rubber Bellows Boot x 2 - Rotating Screw			
N	No Cover Pipe & No Bellows Boot #9			
W	Cover Pipe & PU Waterproof Bellows Boot #9			
Х	PU Waterproof Bellows Boot x2 - Rotating Screw			

26 - Character Space

GROUP-3 - Accessories

27 - Drive Type				
0	None, Standard Features	Н	Hand Wheel - LHS	
А	Motor Adapter Only, B14 - LHS	J	Hand Wheel - RHS	
В	Motor Adapter Only, B14 - RHS	R	Rotation Indicator (Visual) on worm shaft - LHS	
С	Motor Adapter B14 & Coupling - LHS	Т	Rotation Indicator (Visual) on worm shaft - RHS	
E	Motor Adapter B14 & Coupling - RHS			

28- Motor Frame Size / Drive Interface Size				
0	Not Applicable	F	112 Size IEC Frame	
А	63 Size IEC Frame	G	132 Size IEC Frame	
В	71 Size IEC Frame	Н	160 Size IEC Frame	
С	80 Size IEC Frame	I	180 Size IEC Frame	
D	90 Size IEC Frame	J	200 Size IEC Frame	
E	100 Size IEC Frame			

29 - Mounting Kit for Limit Switches & Stop Nuts #18			
0	None	Ρ	Inductive Proximity Sensor, 2, End of Stroke, Adjustable #9
С	RLS-51 Rotary Cam Limit Switch - RHS	S	SKA Rotary Cam Limit Switch - RHS
D	RLS-51 Rotary Cam Limit Switch - LHS	Т	SKA Rotary Cam Limit Switch - LHS
E	RLS-51 Rotary Cam Limit Switch - RHS with Stop Nut	U	SKA Rotary Cam Limit Switch - RHS with Stop Nut
F	RLS-51 Rotary Cam Limit Switch - LHS with Stop Nut	V	SKA Rotary Cam Limit Switch - LHS with Stop Nut
М	Electro-Mechanical Limit Switch, 2, End of Stroke, Adjustable #?	W	Stop Nut

Screw Jack Product Code

30 - Pair	nt, Lubricant, Seals #13 #14
0	Standard Paint, Lubricant & Seals
1	Standard Paint & Food Grade Lubricant & Standard Seals
2	Standard Paint, Nuclear Grade Lubricant & Seals
3	Standard Paint, High Temperature Lubricant & Seals
4	Standard Paint, Low Temperature Lubricant & Seals
5	Standard Paint, Biodegradable Lubricant & Standard Seals
А	No Paint, Standard Lubricant & Seals
В	No Paint & Food Grade Lubricant & Standard Seals
С	No Paint, Nuclear Grade Lubricant & Seals
D	No Paint, High Temperature Lubricant & Seals
E	No Paint, Low Temperature Lubricant & Seals
F	No Paint, Biodegradable Lubricant & Standard Seals
G	Standard Primer, Lubricant & Seals
н	Standard Primer & Food Grade Lubricant & Standard Seals
I	Standard Primer, Nuclear Grade Lubricant & Seals
J	Standard Primer, High Temperature Lubricant & Seals
к	Standard Primer, Low Temperature Lubricant & Seals
L	Standard Primer, Biodegradable Lubricant & Standard Seals
м	Epoxy Paint, Standard Lubricant & Seals
N	Epoxy Paint & Food Grade Lubricant & Standard Seals
Р	Epoxy Paint, Nuclear Grade Lubricant & Seals
R	Epoxy Paint, High Temperature Lubricant & Seals
S	Epoxy Paint, Low Temperature Lubricant & Seals
Т	Epoxy Paint, Biodegradable Lubricant & Standard Seals

Notes:

- #1 Rotating screw models only.
- #2 Trunnions on same side as worm shaft (standard).
- #3 Trunnions at 90° to worm shaft.
- #4 Standard right hand thread form. Worm shaft turns clockwise to extend screw.
- #5 Left hand thread form. Worm shaft turns anti-clockwise to extend screw.
- #6 Standard is clevis axis parallel to worm shaft.
- #7 Limit switch mounting included.
- #8 Plain End "A" has same dimensions as "E threaded end" except no thread form.
- #9 Translating screw models only.
- #10 Basic Translating and Rotating units in both Upright and Rotating versions (all variant & accessories on application).
- #11 All models except E-Series 5 kN & 10 kN models
- #12 Models 10 100kN only
- #13 Power Jacks defined standard paint available as a data sheet.
- #14 Power Jacks defined standard lubricant.
- #15 For Rotating Screw Jacks the "Cover Pipe" may actually be a "Plug"
- #16 All Stainless Steel Screw Jack by default defines the worm shaft, lifting screw and end fitting as Power Jacks standard stainless steel material.
- #17 If Lifting Screw is Stainless Steel material then the End Fitting is Stainless Steel as well by default.
- #18 Limit Switches not included. Limit switch specification to be detailed as separate item.

Product Code Example

EMT0100-U001100-0790-TB00-0000 E-Series, Machine Screw, Translating, 100kN, Upright, No extra gearbox features, 8:1 gear ratio, 12mm lead on screw, 790mm Stroke, Top Plate, Base Mount, standard drive features, standard paint and lubrication.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
Е	м	т	0	1	0	0	-	U	0	0	1	1	0	0	-	0	7	9	0	-	т	в	0	0	-	0	0	0	0	

EMT0200-V002100-1250-CB00-0000 E-Series, Machine Screw, Translating, 200kN, Upright, Stainless Steel Screw Jack, No extra gearbox features, 8:1 gear ratio, 12mm lead on screw, 1250mm Stroke, Clevis End, Base Mount, standard drive features, standard paint and lubrication.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Е	м	т	0	2	0	0	-	۷	0	0	2	1	0	0	-	1	2	5	0	-	С	в	0	0	-	0	0	0	0

EBR0025-I001200-0500-FB0B-CAEO E-Series, Ball Screw, Rotating, 25kN, Inverted, No extra gearbox features, 6:1 gear ratio, 10mm lead on screw, 500mm Stroke, Fork End, Base Mount, Bellows Boot screw protection, Motor Adapter & Coupling Kit for IEC 63 Frame size on Left Hand Side (LHS), RLS-51 rotary canm limit switch on Right Hand Side (RHS) with Stop Nut, standard paint and lubrication.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
E	в	R	0	0	2	5	-	I	0	0	1	2	0	0	-	0	5	0	0	-	F	в	0	в	-	С	A	Е	0

Five Step Guide to Initial Screw Jack Selection

The following selection procedure is applicable for Machine Screw and Ball Screw Jacks.

Calculate Power and Torque Requirements

Select a screw jack from the tables with adequate load carrying capacity and note the screw jack static and dynamic efficiency for required input speed.

Step 1 - Screw Jack Input Speed

N (rpm) = ______ Linear Speed (mm/min) x Gear Ratio Pitch (mm) x N° of Starts on Lifting Screw

Input speed should not exceed 1800 rpm. Number of starts on lifting screw is usually 1, unless otherwise stated.

Note: Screw Lead = Pitch x No of Starts

Step 2 - Operating Input Power (kW), P_{in}

P_{in}(kW) = ______ Load (kN) x Linear Speed (mm/min) 60000 x **η**_d

 η_d = Dynamic Screw Jack Efficiency

Step 3 - Operating Input Torque

P_{in} (kW) x 9550 T_{ino} (Nm) = _____ N (rpm)

Step 4 - Screw Jack Start-Up Torque

 $T_{ins} = \frac{\text{Load (kN) x Pitch (mm) x N^{\circ} of Starts on Lifting Screw}}{2 \times \pi \times n}$

2 x π x η x Gear Ratio

 η_s = Static Screw Jack Efficiency

Note: Screw Lead = Pitch x No of Starts

Step 5 - Mechanical Power and Torque Check

Check whether the screw jack power and torque required for the application is not greater than the maximum allowable mechanical input power (P_{merhanical}) and Start-Up Torque at Full Load (T_s) values specified in the screw jack performance tables.

If $P_{mechanical} > P_{in} \& T_s > T_{ins}$ then the screw jack selected is acceptable for power requirements.

Example Selection

Application Constraints

- Load on Screw Jack = 15 kN in Tension
- Linear Speed required = 100 mm/min

Consider all application constraints then choose a screw jack that looks suitable for the application with a load rating equal to or greater than the maximum working load. For this example, a 25 kN E-Series Machine Screw Jack (refer P60) with translating screw, 6:1 gear ratio, single start lifting screw (6 mm lead).

Calculate Power and Torgue Requirements

Step 1 - Screw Jack Input Speed

100 (mm/min) x 6 (Gear Ratio) N (rpm) = ______6 (mm) x 1 (N° of starts on Lifting Screw)

Step 2 - Operating Input Power (kW), P_{in}

P_{in}(kW) = ______15 (kN) x 100 (mm/min) 60000 x 0.264

0.095 (kW) x 9550

100 (rpm)

Step 3 - Operating Input Torque

T_{ina} (Nm) = _____

Step 4 - Screw Jack Start-Up Torque

т –	15 (kN) x 6 (mm) x 1 (N° of starts on Lifting Screw)	T _{ins} = 11.9 Nm
ins –	2 x π x 0.201 x 6 (Gear Ratio)	$\eta_{s} = 0.201$ (refer P60)

Step 5 - Mechanical Power and Torque Check

Find the screw jacks mechanical power and torque rating from the performance data tables (refer P60).

 $P_{mechanical} = 1.5 \text{ kW} > P_{in} \text{ and } T_s = 19 \text{ Nm} > T_{ins}$

Therefore the screw jack selected is suitable for application for initial constraints tested, further analysis may be required to ensure the screw jack is suitable for all application conditions. Continue with further selection calculations or consult Power Jacks Ltd.

 $\eta_{d} = 0.264$ (Refer P60) $P_{in} = 0.095 \text{ kW}$

Input speed should not exceed 1800 rpm.

N = 100 rpm

 $T_{ino} = 9.1 \text{ Nm}$

Screw Jack Constraints for Detailed Selection

Lifting Screw Column Strength

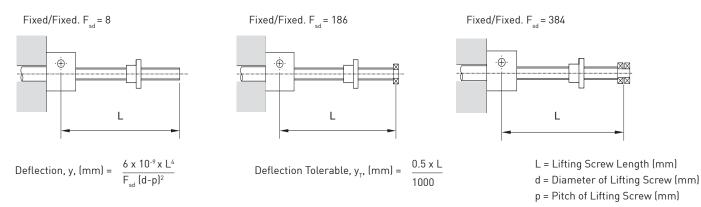
For compressive loads on the screw jack lifting screw column strength calculations are required to check for buckling. As a screw jack selection guide use the following process:

- 1. Determine the maximum column strength (L) for the screw jack being considered.
- Referring to the relevant column buckling chart determine the permissible compressive load (Wp) corresponding to the column length (L) for the appropriate end constraints. This permissible compressive load is the maximum load (inclusive of shock loads) which may be applied to the screw jack for a given column length.
- 3. Where an application involves human cargo or there is a risk to personnel, it is highly recommended that the permissible compressive load (as calculated above) be factored by 0.7 to enhance working safety. (Equivalent to a column strength safety factor of 5).

 $W_{phc} = W_p \times 0.7$ (Permissible compressive load for personnel risk applications)

Note 1. For detailed analysis of screw jacks and their systems consult Power Jacks.2. Safety factor of 3.5 for column strength's used for normal industrial cargo.

Lifting Screw Critical Speed


For fast operating rotating screw jacks, the critical speed (rotational speed) of the lifting screw needs to be considered in case of shaft whirling. To calculate the critical speed for rotating screw jacks:

- 1. Refer to the appropriate critical speed chart.
- 2. Select the correction factor F_{cc} corresponding to the end support conditions for the application.
- 3. From the critical speed chart, select the critical speed corresponding to the unsupported screw length (m) and the screw jack load rating (kN).
- 4. Calculate the limiting critical speed with the formula: Limiting Critical Speed = Critical screw speed x F_{re}

Lifting Screw Deflection

The lifting screw of a screw jack mounted horizontally will deflect under its own weight to some extent. The amount of deflection tolerable (y_{τ}) should be less than 0.5 mm per metre.

Deflection Factors, F_{sd}

If $y < y_{\tau}$ then the lifting screw deflection is acceptable.

Note: This is only a deflection guide. For detailed analysis, including methods to reduce deflections, consult Power Jacks Ltd.

Screw Jack Input Torque

Start up/static torque values are listed in all performance tables. Whereas dynamic torque values are either calculated using the tabulated dynamic efficiencies or taken direct from torque tables where listed. For detailed screw jack analysis consult Power Jacks Ltd.

Side Loads on Screw Jacks

It is recommended that all side loads (F_{sl}) are carried by guides in your arrangement and not by the lifting screw and nut. If there are any side loads on the screw jack, they must not exceed those tabulated in the Engineering Guide, Side Load Rating Section, and it must be noted that any such loads will adversely affect the life of the lifting screw and nut.

Radial Forces on Screw Jack Worm Shaft

For applications where a screw jack is belt driven, radial force (F_R) values exerted on the worm shaft must not exceed those tabulated in the Engineering Guide Section. Values are tabulated for the metric machine screw jacks and ball screw jacks. The values are maximum values for the screw jacks at rated load regardless of worm speed or load direction.

Screw Jack Self-Locking

Approximately 50% of machine screw jacks are self-locking either in the gearbox or the lifting screw, however to ensure there is no selflowering and to reduce drift due to the motor slowing, a brake is recommended. Standard motor frame size brakes will be suitable for most applications with only slight vibration and thermal fluctuation present. Motor selection as normal. For dynamic braking consult Power Jacks.

Ball screw jacks and roller screw jacks always require a brake as their high efficiency makes them self-lowering.

Use the closest standard brake size that is greater or equal to the motor brake torque required.

Note 1. Self lowering can occur in any jacking system not fitted with a brake, where high levels of vibration are present in the application. 2. Power Jacks recommend the use of a brake on single screw jack applications in the vertical position.

Jacking System Power Input

Total Input Power for Jacking Systems (kW), P.:

P_s = _____ Input Power per Screw Jack (kW) x Number of Screw jacks

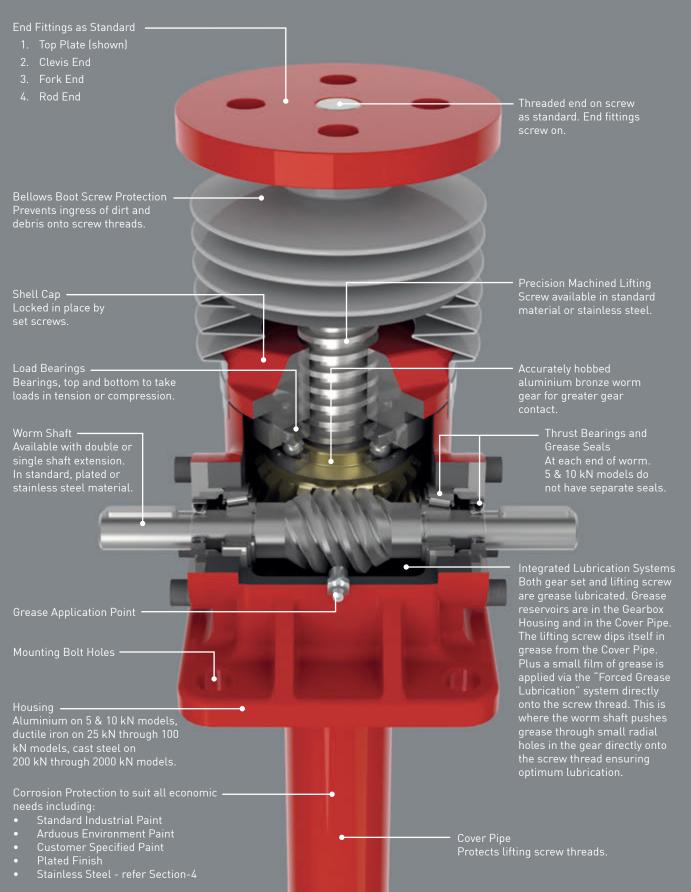
Arrangement Efficiency x Gearbox Efficiency

Number of Screw Jacks in System	2	3	4	6-8
Jacking System Efficiency	0.95	0.90	0.85	0.80

Gearbox Efficiency = Bevel Gearbox Efficiency x Reduction Gearbox Efficiency

Bevel Gearbox Efficiency = 0.95 typical

Reduction Gearbox Efficiency = Consult unit details, if no reduction gearbox present assume efficiency of 1.


Note

For Screw Jacks connected in-line, the worm shaft can transmit up to 3 times the torque for a single screw jack at its maximum capacity, except the E--0200 (200kN) Unit which can transmit 1.5 times the torque.

E-Series Machine Screw Jack

AVAILABLE IN MANY STANDARD MODELS WITH A WIDE RANGE OF CAPABILITIES, THERE IS A STANDARD MODEL FOR ALMOST ANY REQUIREMENT.

www.poweriacks.com

POWERJACKS

Unright

Inverted

Inverter

Rotating Screw

Typical Applications

Conventional Machine Screw Jacks are most widely used for intermittent duty cycles, as the screw jack incorporates a precision worm gear set in a rugged casting delivering positive, precise actuation. Available in a comprehensive range of materials and fittings with the option for special designs for specific application requirements. They are used in wide variety of automation applications including those in steel, automotive, communications, civil, defence, energy, glass and aerospace sectors.

Standard Designs

The standard E-Series screw jack is available in translating and rotating screw designs in capacity sizes from 5kN to 2000kN. The design is optimised for performance, function and reliability with a highly flexible platform for customisation in addition to the standard options. The options and accessories (section-7) list is long and varied and allows you to configure a standard design that is just right for your application. These options include Anti-Backlash, Anti-Rotation (Keyed) and Safety Nut designs.

Special Designs

We can fully customise our screw jacks so that your application can be the best.

Customisation can be anything from a small modification such as an extra bolt hole on an end fitting to a completely new design of screw jack based on our class leading technology.

For more details please see the Special Screw Jack information in Section-8 or contact us today with your requirements. Our team are looking forward to working with you.

Selecting the Right Screw Jack

Consider all application constraints then choose a product that looks suitable for the intended application. Calculate the power and torque requirements. This is a 5 step process:

- Screw Jack Input Speed (RPM)
- Operating Input Power (kW)
- Operating Input Torque (Nm)
- Screw Jack Start-up Torque (Nm)
- Mechanical Power and Torque Check

Systems

The screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearbox , drive shafts, couplings, plummer blocks and motion control devices.

The use of bevel gearboxes allows the distribution of drive throughout a jacking system. The gearboxes come in 2,3 and 4 way drive types. See the Bevel Gearbox Section-10 for more details.

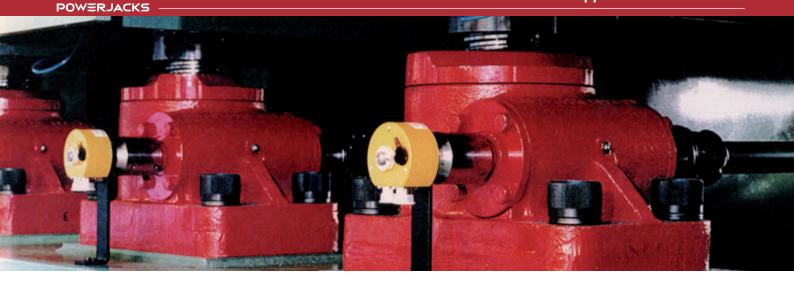
Bevel gearboxes and other system components can also be supplied in stainless steel or other corrosion resistant designs.

Two of the most popular system configurations are the 'H' and 'U' configured jacking systems. Remember that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.

If multiple machine screw jacks are connected in a mechanically linked system then the complete system may be considered self-locking. If you would like this checked consult Power Jacks. Alternatively, to be sure, include a brake on the system either as a stand alone device or as a brake motor.

ADJUSTABLE TABLE STOPS FOR TATA STEEL PRODUCTION

E-Series Machine Screw Jacks are installed on the adjustable table and centring stops for the Rectangular Hollow Sections (RHS) department at TATA Steel Europe 20" pipe mill in Hartlepool.


Automated adjustable stop mechanisms use 50kN E-Series translating machine screw jacks in inverted screw configuration. Each stop mechanism uses a four screw jack system that is driven by one electric motor. The electric motor is positioned in the centre of the system with 2 screw jacks either side.

A bevel gearbox is used to split the drive line to each side from the motor with self-supporting drive shafts (spacer couplings) used to connect each screw jack to the system. One screw jack in each system is fitted with an encoder for speed and position feedback, which is displayed on an electronic display.

For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

Application Focus 25

BRONX METAL SECTION STRAIGHTENER

Variable centre straighteners for moving the centre straightening rollers, end pinch rollers and the landing legs.

A jacking system for each straightening roller has two special design screw jacks and a strengthened gearbox, rated for a 700kN dynamic capacity in compression. The pinch rollers have their position adjusted by two horizontally opposing screw jacks, driven individually by motorised helical gearboxes.

For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

E-Series - Machine Screw Jacks - Standard Performance

	•	Mode	el			0005 0005		0010 0010		0025		0050		0100 0100
Capaci	ty		kN		Ę	ō	1	0	2	25	5	0	1	00
			mm		1	6	2	0	3	80	4	.0	5	5
Lifting Screw			Opt	ion	1	2	1	2	1	2	1	2	1	2
		Lead	m	m	3	6	5	10	6	12	9	18	12	24
Gear			Option 1		5	:1	5	:1	6	:1	6	:1	8	:1
Ratios			Option 2		20):1	20):1	24	4:1	24:0	1:00	24	i:1
Turn o worm	n	Ratio C	ption 1	1 Turn	0.6mm	1.2mm	1mm	2mm	1mm	2mm	1.5mm	3mm	1.5mm	3mm
for trav of liftin screw	ng	Ratio C	ption 2	4 Turn	0.6mm	1.2mm	1mm	2mm	1mm	2mm	1.5mm	3mm	2mm	4mm
Max. Inp		Gear	Ratio Opt	ion 1	0.	25	0.3	375	1	.5	3	.0	3.	75
Power (kW)		Gear	Ratio Opt	ion 2	0.	12	0.	19	0.3	375	0.	55	1.1	25
Start u torque	· ·	Gear	Ratio Opt	ion 1	2.5	3.3	6.8	9.4	19.8	26.3	56	76	115.9	156.5
full load (Nr		Gear	Ratio Opt	ion 2	1.1	1.4	3	4.2	8.7	11.6	25.5	34.7	60.5	81.8
Maximui Torque (rough			7.	.5	2	0	5	59	10	68	34	47
Lead Sci Torque (estrainir	ng		8	11	22	30	76	102	210	34.7	575	780
Worm SI Radial L			1		18	30	32	25	31	80	74	40	10	00
Maximu	m Inp	ut Speed	d (rpm)		18	00	18	00	18	800	18	00	18	00
Gear Ca	se Ma	aterial			Alum	inium	Alum	inium	SG	Iron	SG	Iron	SG	Iron
Weight (kg) -		EM	Т	1	.3	2.	36	8.	45	14	4.9	24	4.3
stroke =	150m	חות ו	EM	R	1.:	36	2	.6	8.	85	16	.54	28	3.8
Weight (er _	EM	Т	0.	08	0.	11	0.	21	0.	32	0.	58
extra 25	mm		EM	R	0.	03	0.	05	0.	11	0.	19	0.	36
		Ge	ar Ratio		5	:1	5	:1	6	:1	6	:1	8	:1
Gear Ratio Option	Sci	rew Jack	Static Eff	iciency	0.189	0.291	0.233	0.339	0.201	0.302	0.213	0.314	0.206	0.305
1			lack Dyna ficiency	mic	0.252	0.370	0.306	0.424	0.264	0.383	0.281	0.398	0.272	0.388
Gear		Ge	ar Ratio		20):1	20):1	24	4:1	24	4:1	24	i:1
Ratio Option	Sc	rew Jack	Static Eff	iciency	0.107	0.165	0.130	0.192	0.115	0.171	0.117	0.172	0.132	0.195
2			lack Dyna ficiency	mic	0.160	0.235	0.194	0.268	0.167	0.242	0.172	0244	0.190	0.271

Notes 1-3 of 7

1. Efficiency values for standard grease lubricated worm gear box and lifting screw.

2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

www.powerjacks.com

POWERJACKS

Performance :

2

E-Series - Machine Screw Jacks - Standard Performance

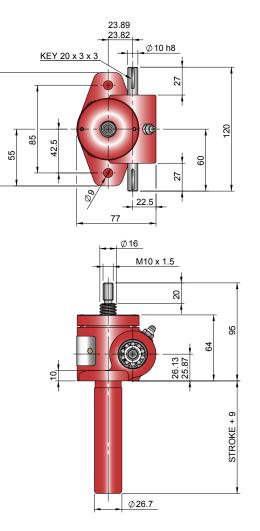
		Mode	l			0200 0200		0300 0300		0500 0500	EMT1000 EMR1000	EMT1500 EMR1500	EMT2000 EMR2000
Capaci	ty		kN		20	00	30	00	51	00	1000	1500	2000
			mm		6	5	9	5	1:	20	160	180	220
Lifting Screw			Op	tion	1	2	1	2	1	2	1	1	1
		Lead	m	ım	12	24	16	32	16	32	20	20	24
Gear			Option 1		8	:1	10 2	2/3:1	10 2	2/3:1	12:1	11 2/3:1	18:1
Ratios			Option 2		24	::1	32	2:1	32	2:1	36:1	N/A	N/A
Turn o worm	n	Ratio O	ption 1	1 Turn	1.5mm	3mm	1.5mm	3mm	1.5mm	3mm	1.67mm	1.71	1.33
for trav of liftin screw	ng	Ratio O	ption 2	4 Turn	2mm	4mm	2mm	4mm	2mm	4mm	6.67mm	N/A	N/A
Max. Inp		Gear	Ratio Op	ition 1	3.	75	6	.0	11	.25	18.5	25.3	32.5
Power (kW)		Gear	Ratio Op	ition 2	1.1	25	1	9	4	.5	8.25	N/A	N/A
Start u torque		Gear	Ratio Op	tion 1	263.8	343	480	618	904	1113	2025	3655	3895
full load (Nr		Gear	Ratio Op	tion 2	137	179	284	365	504	618	1119	N/A	N/A
Maximu Torque (ough			39	76	14	40	27	12	6075	7310	7790
Lead Sc Torque (estraini	ng		1300	1705	5645	6975	5645	6975	14890	24610	39995
Worm SI Radial L			n		16	00	21	70	21	90	2220	4450	7800
Maximu	m Inp	ut Spee	d (rpm)		18	00	18	00	18	00	1800	1000	600
Gear Ca	se Ma	iterial			Ste	eel	Ste	eel	St	eel	Steel	Steel	Steel
Weight (EMI	г	42	2.4	92	2.4	18	3.7	459.1	563	1172
- stroke 150mm			EMF	2	49	.58	113	3.78	22	24	560.4	708	1534
Weight (kg) pe	er	EMI	Г	0.	84	1.	55	2.	48	4.11	5.8	9
extra 25	mm		EMF	2	0.	52	1.	13	1.	94	3.38	4.4	6.5
		Gea	ar Ratio		8	:1	10 2	2/3:1	10 2	2/3:1	12:1	11 2/3:1	18:1
Gear Ratio Option	Scre	w Jack	Static Ef	ficiency	0.181	0.279	0.149	0.232	0.132	0.215	0.131	0.112	0.109
1	9		ack Dyna iciency	amic	0.242	0.357	0.205	0.308	0.181	0.284	0.178	0.155	0.151
Gear		Gea	ar Ratio		24	.:1	32	2:1	32	2:1	36:1	N/A	N/A
Ratio Option	Scre	w Jack	Static Ef	ficiency	0.116	0.178	0.084	0.131	0.079	0.129	0.079	N/A	N/A
2	9		ack Dyna iciency	amic	0.169	0.250	0.128	0.192	0.120	0.188	0.123	N/A	N/A

Notes 4-7 of 7

4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.

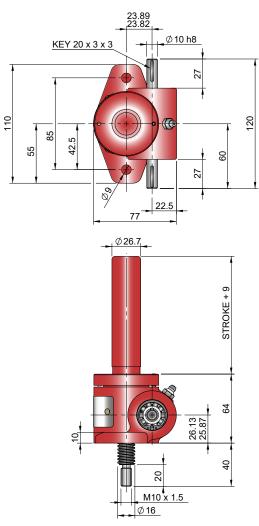
5. Torque required to prevent the lead screw or lead nut from rotating if no anti-rotation device fitted to screw jack.

6. Radial force applied midway along worm shaft key at 90° to key.

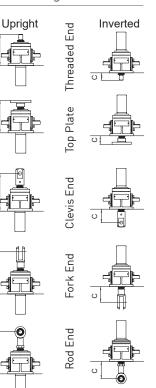

7. Maximum transmittable torque through worm shaft, not through gear set.

110

Inverted EMT0005-I00



Performance

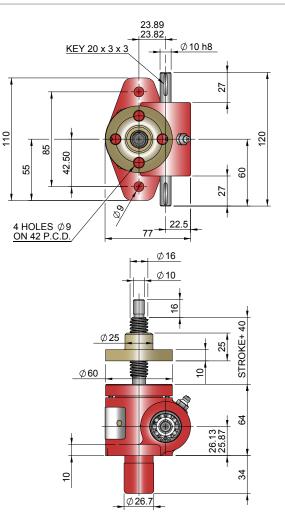

Model			EMT EMR	0005 0005
Capacity		kN	Ę	5
	Diame	ter (mm)	1	6
Lifting Screw	Lead	Option	1	2
	Leau	mm	3	6
	Gear Ratio		5	:1
Gear Ratio Option 1	Static Effic	iency	0.189	0.291
	Dynamic E	fficiency	0.252	0.370
	Gear Ratio		20	1:1
Gear Ratio Option 2	Static Effic	iency	0.107	0.165
	Dynamic E	fficiency	0.160	0.235
Max. Input	Gear Ratio	Option 1	0.	25
power (kW)	Gear Ratio	Option 2	0.	12
Start up torque at full load	Gear Ratio	Option 1	2.5	3.3
(Nm)	Gear Ratio	Option 2	1.1	1.4

Model				0005 0005
Capacity	kN		Ę	5
Lifting Screw I	Lead (mm)		3	6
Turn of worm for	Gear Ratio 1	1 Turn	0.6mm	1.2mm
travel of lifting screw	Gear Ratio 2	4 Turn	0.6mm	1.2mm
Maximum Thr	ough Torque (Nn	n)	7.	.5
Lifting Screw I	Restraining Torq	ue (Nm)	8	11
Worm Shaft M (N)	aximum Radial I	_oad	18	30
Maximum Inp	ut Speed (rpm)		18	00
Gear Case Ma	terial		Alum	inium
Waight (kg)	troko - 150mm		EMT	1.3
weight (kg) - s	stroke = 150mm		EMR	1.36
Waight (kg)	or outro 25mm	straka	EMT	0.08
vvergrit (kg) - p	er extra 25mm s	ытоке	EMR	0.03
Note: All dimension	on in millimetres un	less other	vise stated	

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

Closed Height

www.powerjacks.com


5kN Rotating

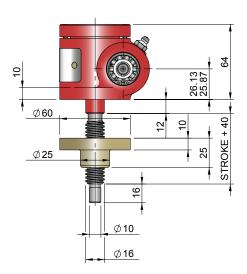
2

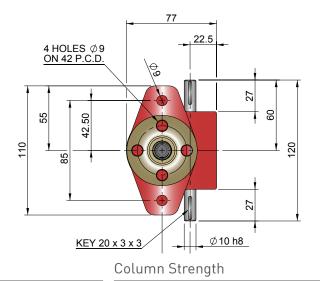
29

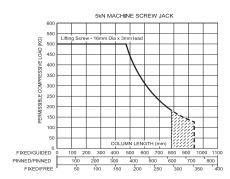
Upright EMR0005-U00

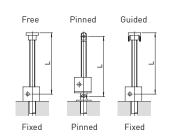
Inverted EMR0005-I00

Closed Height & Bellows Boots

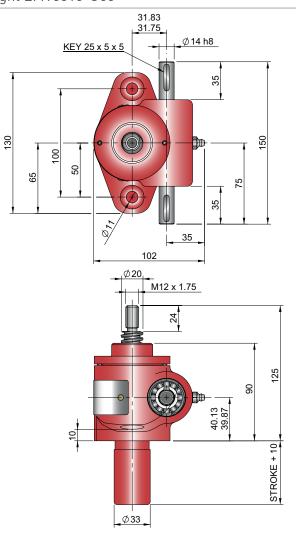

Note

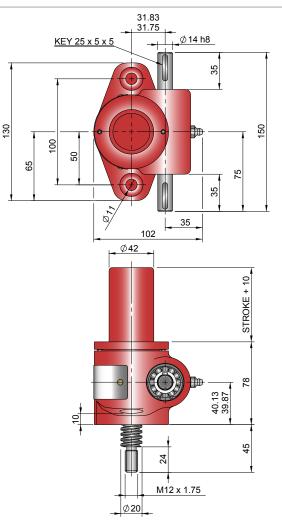

Closed	Thread	ed End	Top f	Plate	Clevi	s End	Fork	End	Rod	End
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0005	95	40	95	40	115	60	114	59	117	62
Stroke (mm)				EMT	0005 with	Bellows E	3oots			
1-150	95	70	95	70	115	90	114	89	132	107
151-300	120	90	120	90	140	110	139	109	157	127
301-600	120	90	120	90	140	110	139	109	157	127


Model	А	В	D	Е	G
EMT0005	25	60	13	13	100
Stroke	1-150	151-300	301-600	601-900	901-1050



- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4
- 5
- Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

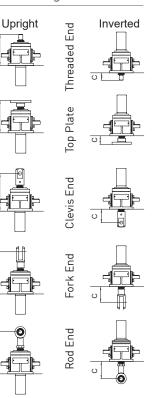




Performance

Model	EMT0010 EMR0010			
Capacity		kN	1	0
	Diame	ter (mm)	2	0
Lifting Screw	Lead	Option	1	2
	LCdd	mm	5	10
	Gear Ratio		5:	:1
Gear Ratio Option 1	Static Effic	iency	0.233	0.339
	Dynamic Efficiency 0.306		0.424	
	Gear Ratio		20	1:1
Gear Ratio Option 2	Static Effic	iency	0.130	0.192
	Dynamic E	fficiency	0.194	0.268
Max. Input	Gear Ratio	Option 1	0.375	
power (kW)	Gear Ratio	Option 2	0.	19
Start up torque at full load	Gear Ratio	Option 1	6.8	9.4
at full load (Nm)	Gear Ratio	Option 2	3	4.2

Model	EMT0010 EMR0010							
Capacity	kN		1	0				
Lifting Screw	Lead (mm)		5	10				
Turn of worm for	Gear Ratio 1	1 Turn	1mm	2mm				
travel of lifting screw	Gear Ratio 2	4 Turn	1mm	2mm				
Maximum Thr	20							
Lifting Screw	Restraining Torq	ue (Nm)	22	30				
Worm Shaft M (N)	aximum Radial	Load	32	25				
Maximum Inp	ut Speed (rpm)		18	1800				
Gear Case Ma	terial		Alum	inium				
Waight (kg)	troko - 150mm		EMT	2.36				
Weight (kg) - s	EMR	2.6						
Woight (kg)	EMT	0.11						
Weight (kg) - per extra 25mm stroke			EMR	0.05				
Note: All dimension in millimetres unless otherwise stated.								

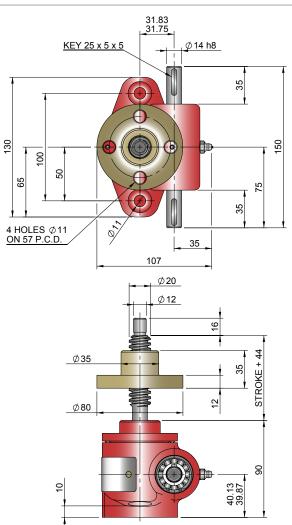

Note: All dimension in millimetres unless otherwise stated Designs subject to change without notice

JACKS

DO

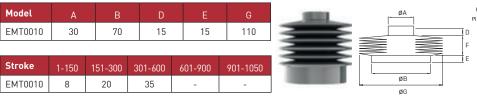
Closed Height

Inverted EMT0010-I00

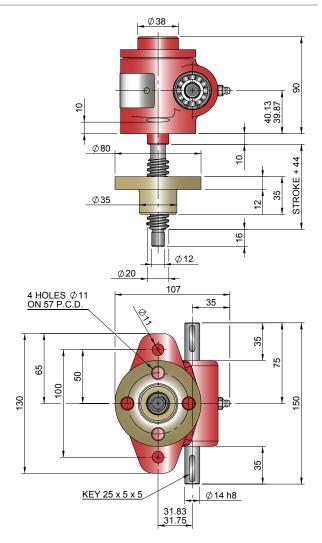


10kN Rotating

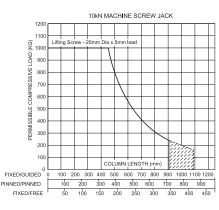
2

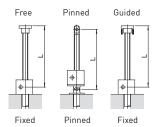

Upright EMR0010-U00

Inverted EMR0010-I00


Closed Height & Bellows Boots

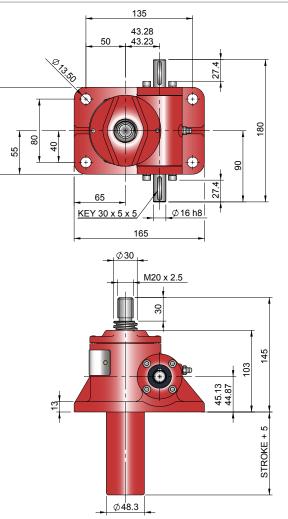
Closed	Thread	ed End	Top I	Plate	Clevi	s End	Fork	End	Rod	End
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0010	125	45	125	45	145	65	148	98	150	70
Stroke (mm)	EMT0010 with Bellows Boots									
0-150	125	75	125	75	145	95	148	98	165	115
151-300	130	95	130	95	150	115	153	118	170	135
301-600	140	95	140	95	160	115	163	118	180	135
751-1000	-	-	-	-	-	-	-	-	-	-




- Note
 - 2
 - Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
 - For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5

 - Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

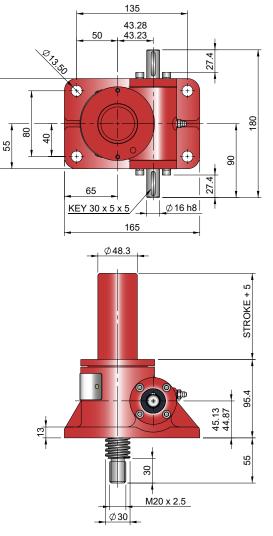
Column Strength


32 25kN Translating

Upright EMT0025-U00

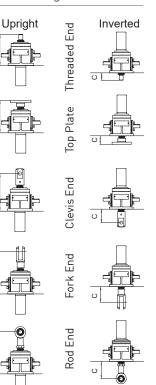
110

110



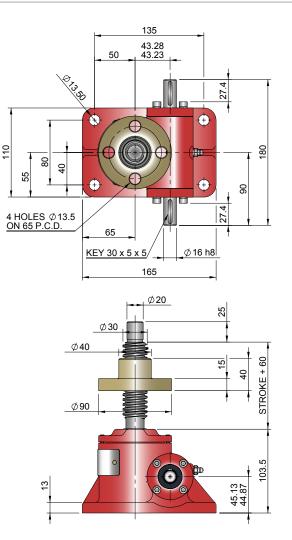
Model	EMT0025 EMR0025			
Capacity		kN	2	5
	Diame	ter (mm)	3	0
Lifting Screw	Lead	Option	1	2
	Leau	mm	6	12
	Gear Ratio		6	:1
Gear Ratio Option 1	Static Effic	iency	0.201	0.302
	Dynamic E	fficiency	0.264	0.383
	Gear Ratio		24	:1
Gear Ratio Option 2	Static Effic	iency	0.115	0.171
	Dynamic E	fficiency	0.167	0.242
Max. Input	Gear Ratio	Option 1	1.5	
power (kW)	Gear Ratio	Option 2	0.3	875
Start up torque	Gear Ratio	Option 1	19.8	26.3
at full load (Nm)	Gear Ratio	Option 2	8.7	11.6

Model		EMT0025 EMR0025					
Capacity	kN		2	5			
Lifting Screw I	Lead (mm)		6	12			
Turn of worm for	Gear Ratio 1	1 Turn	1mm	2mm			
travel of lifting screw	Gear Ratio 2	4 Turn	1mm	2mm			
Maximum Thr	Maximum Through Torque (Nm)						
Lifting Screw I	Restraining Torq	ue (Nm)	76	102			
Worm Shaft M (N)	aximum Radial	Load	380				
Maximum Inp	ut Speed (rpm)		18	1800			
Gear Case Ma		Alum	Aluminium				
Mainht (ka)			8.45				
Weight (kg) - s	EMR	8.85					
Weight (kg) - per extra 25mm stroke			EMT	0.21			
			EMR	0.11			
Note: All dimension in millimetres unless otherwise stated							

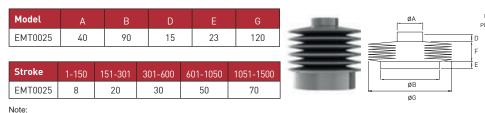

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

PO

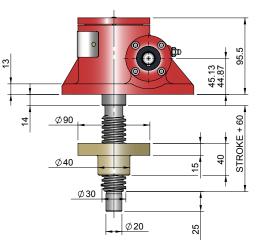
WERJACKS

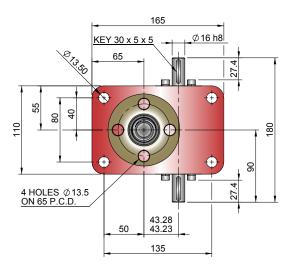

www.powerjacks.com

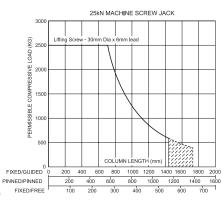
25kN Rotating

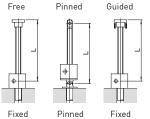

Upright EMR0025-U00

Inverted EMR0025-100

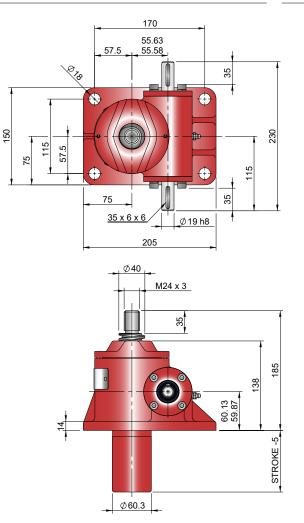

Closed Height & Bellows Boots


Closed	Closed Threaded End		Top Plate		Clevis End		Fork End		Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0025	145	55	145	55	170	80	194	104	190	100
Stroke (mm)	EMT0025 with Bellows Boots									
1-300	145	80	145	80	170	105	194	129	205	140
301-600	145	105	145	105	170	130	194	154	205	165
601-1050	170	130	170	130	195	155	219	179	230	190
1051-1500	195	130	195	130	220	155	244	179	255	190


- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
 - 4
 - For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 5

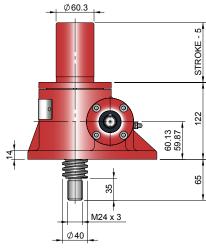

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

Column Strength



34 50kN Translating

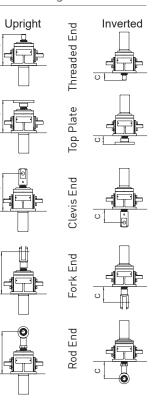
Upright EMT0050-U00


Inverted EMT0050-I00

170 55.63 55.58 57.5 6.0 35 $\hat{}$ \oplus 150 230 115 57.5 75 115 \oplus ÷÷ 35 75 <u>35 x 6 x 6</u> Ø 19 h8 205

PO

WERJACKS

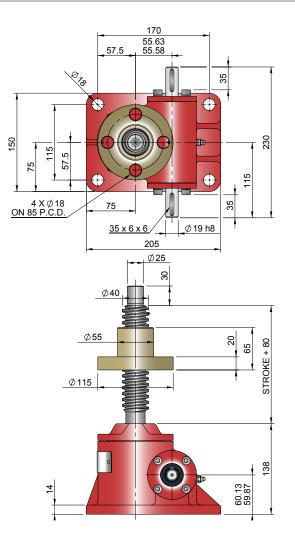

Performance

Model	EMT0050 EMR0050				
Capacity		kN	5	0	
	Diame	ter (mm)	4	0	
Lifting Screw	Lead	Option	1	2	
	Leau	mm	9	18	
	Gear Ratio		6	:1	
Gear Ratio Option 1	Static Effic	iency	0.213	0.314	
	Dynamic E	fficiency	0.281	0.398	
	Gear Ratio		24	:1	
Gear Ratio Option 2	Static Effic	iency	0.117	0.172	
	Dynamic E	fficiency	0.172	0.244	
Max. Input	Gear Ratio	Option 1	3.0		
power (kW)	Gear Ratio	Option 2	0.	55	
Start up torque at full load	Gear Ratio	Option 1	56	76	
(Nm)	Gear Ratio	Option 2	25.5	34.7	

Model		EMT0050 EMR0050			
Capacity	kN		5	0	
Lifting Screw	mm)		9	18	
Turn of worm for travel of	Gear Ratio 1	1 Turn	1.5mm	3mm	
lifting screw	Gear Ratio 2	4 Turn	1.5mm	3mm	
Maximum Thr	168				
Lifting Screw I	Restraining Torq	ue (Nm)	210	290	
Worm Shaft M (N)	aximum Radial I	_oad	74	40	
Maximum Inpu	ut Speed (rpm)		18	1800	
Gear Case Ma	terial		SG	Iron	
Waight (kg)	troko - 150mm		EMT	14.9	
Weight (kg) - s	EMR	16.54			
Woight (kg)	EMT	0.32			
Weight (kg) - per extra 25mm stroke			EMR	0.19	
Note: All dimension in millimetres unless otherwise stated.					

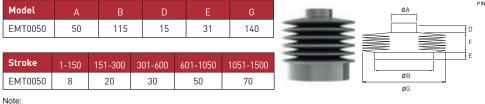
ote: All dimension in millimetres unless otherwise stated Designs subject to change without notice

Closed Height

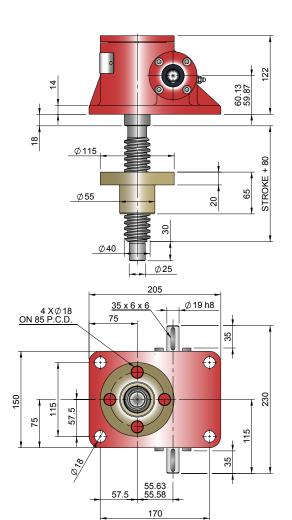


50kN Rotating

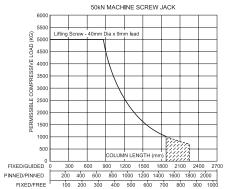
2

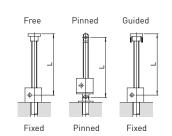

Upright EMR0050-U00

Inverted EMR0050-I00



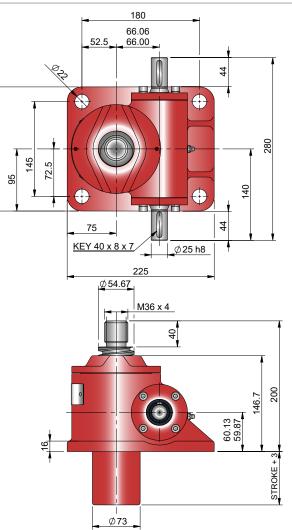
Closed Height & Bellows Boots


Closed	Thread	ed End	Top I	Plate	Clevi	s End	Fork	End	Rod	End
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0050	185	65	185	65	210	90	248	128	242	122
Stroke (mm)		EMT0050 with Bellows Boots								
1-150	185	110	185	110	210	135	248	173	257	182
151-300	185	120	185	120	210	145	248	183	257	192
301-600	210	130	210	130	235	155	273	193	282	202
601-1050	210	150	210	150	235	175	273	213	282	222
1051-1500	235	170	235	170	260	195	298	233	307	242



- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4
- 5
- Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

Column Strength

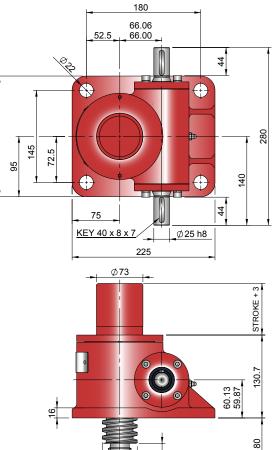

36 100kN Translating

Upright EMT0100-U00

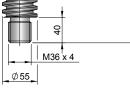
190

Inverted EMT0100-I00

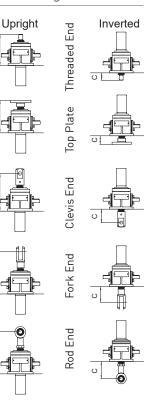
190



Model	EMT0100 EMR0100			
Capacity		kN	10	00
	Diame	ter (mm)	5	5
Lifting Screw	Lead	Option	1	2
	Leau	mm	12	24
	Gear Ratio		8:	:1
Gear Ratio Option 1	Static Effic	iency	0.206	0.305
	Dynamic E	Dynamic Efficiency 0.272		0.388
	Gear Ratio		24	:1
Gear Ratio Option 2	Static Effic	iency	0.132	0.195
	Dynamic E	fficiency	0.190	0.271
Max. Input	Gear Ratio	Option 1	3.75	
power (kW)	Gear Ratio	Option 2	1.1	25
Start up torque	Gear Ratio	Option 1	115.9	156.5
at full load (Nm)	Gear Ratio	Option 2	60.5	81.8


Model	EMT0100 EMR0100					
Capacity	kN		10	00		
Lifting Screw	(mm)		12	24		
Turn of worm for	Gear Ratio 1	1 Turn	1.5mm	3mm		
travel of lifting screw	Gear Ratio 2	4 Turn	2mm	4mm		
Maximum Thr	347					
Lifting Screw	Restraining Torq	ue (Nm)	575	780		
Worm Shaft M (N)	aximum Radial	Load	10	00		
Maximum Inp	ut Speed (rpm)		18	1800		
Gear Case Ma	terial		SG	Iron		
Waight (kg)	stroke = 150mm		EMT	24.3		
vvergrit (kg) - s	EMR	28.8				
Woight (kg)	EMT	0.58				
Weight (kg) - per extra 25mm stroke			EMR	0.36		
Note: All dimension in millimetres unless otherwise stated						

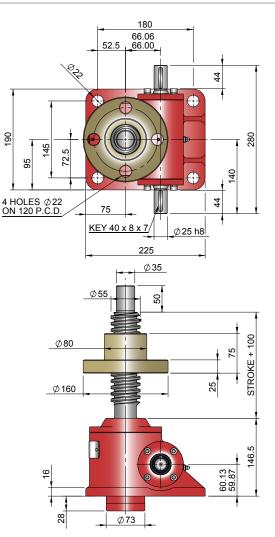
Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice



PO

WERJACKS

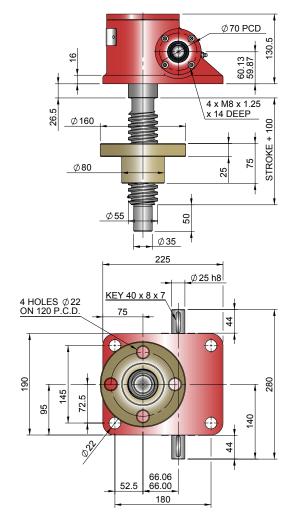
Closed Height



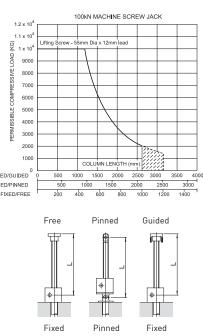
100kN Rotating 37

Upright EMR0100-U00

Inverted EMR0100-I00

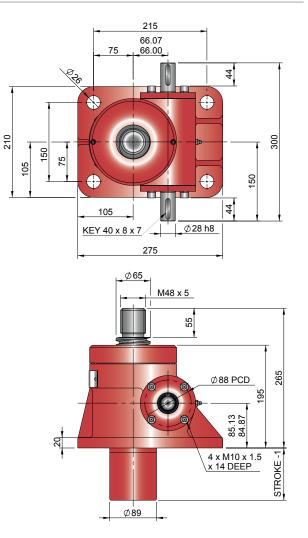


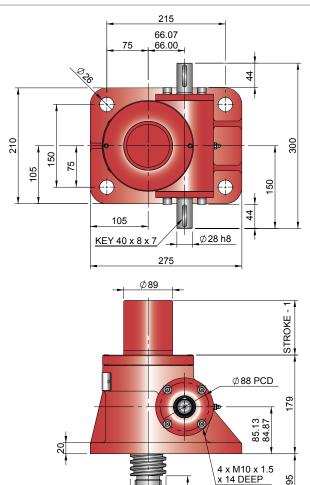
Closed	Threaded End		Top I	Plate	Clevi	s End	Fork End		Rod	Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	
EMT0100	200	80	200	80	245	125	302	182	283	163	
Stroke (mm)		EMT0100 with Bellows Boots									
1-300	200	105	200	105	245	150	302	207	298	203	
301-600	200	130	200	130	245	175	302	232	298	228	
601-1050	225	130	225	130	270	175	327	232	323	228	
1051-1500	250	155	250	155	295	200	352	257	348	253	



- Note
 - 2
 - Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
 - For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7


Column Strength



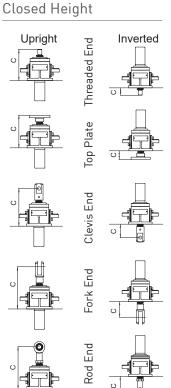
200kN Translating

Upright EMT0200-U00

Inverted EMT0200-I00

55

Ø65 M48 x 5

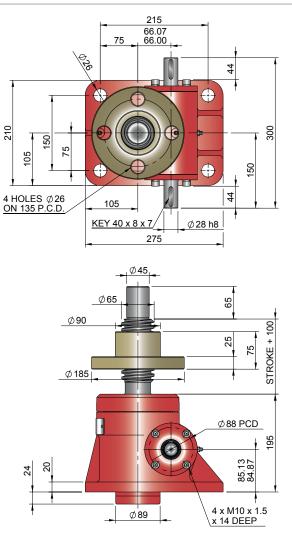

VERJACKS

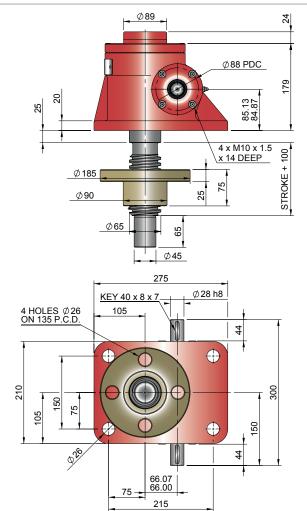
Performance

Model					
Capacity		kN	200		
	Diame	ter (mm)	6	5	
Lifting Screw	Lead	Option	1	2	
	Leau	mm	12	24	
	Gear Ratio		8:	:1	
Gear Ratio Option 1	Static Effic	iency	0.181	0.279	
	Dynamic E	fficiency	0.242	0.357	
	Gear Ratio		24:1		
Gear Ratio Option 2	Static Effic	iency	0.116	0.178	
	Dynamic E	fficiency	0.169	0.250	
Max. Input	Gear Ratio	Option 1	3.75		
power (kW)	Gear Ratio	Option 2	1.125		
Start up torque	Gear Ratio	Option 1	263.8	343	
(Nm)	Gear Ratio	Option 2	137	179	

Model			EMT0200 EMR0200			
Capacity	kN		200			
Lifting Screw	mm)		12	24		
Turn of worm for travel of lifting screw	Gear Ratio 1	1 Turn	1.5mm	3mm		
	Gear Ratio 2	4 Turn	2mm	4mm		
Maximum Thr	Maximum Through Torque (Nm)			396		
Lifting Screw	Restraining Torq	ue (Nm)	1300	1705		
Worm Shaft M (N)	aximum Radial	Load	1600			
Maximum Inp	ut Speed (rpm)		1800			
Gear Case Ma	terial		Ste	eel		
Woight (kg)	troka - 150mm		EMT	42.4		
weight (Kg) - S	stroke = 150mm		EMR 49.58			
Woight (kg)	or oxtra 25mm	stroko	EMT	0.84		
Weight (kg) - per extra 25mm stroke EMR 0.5				0.52		
Note: All dimension	on in millimetres ur	less otherv	vise stated.			

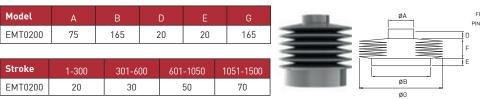
Designs subject to change without notice

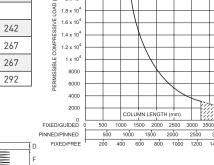

95



200kN Rotating 39

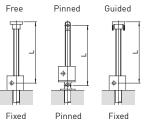
Upright EMR0200-U00


Inverted EMR0200-I00



Closed Height & Bellows Boots

Closed	Threaded End		Top I	Plate	Clevi	s End	Fork	k End Rod		End
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0200	265	95	265	95	310	140	400	230	367	197
Stroke (mm)		EMT0200 with Bellows Boots								
1-300	265	120	265	120	310	165	400	255	387	242
301-600	265	145	265	145	310	190	400	280	387	267
601-1050	290	145	290	145	335	190	425	280	412	267
1051-1500	315	170	315	170	360	215	450	305	437	292



2.4 x 10 2.2 x 10 (B)

2 x 10⁴

1.8 x 10⁴ 1.6 x 10⁴ 1.4 x 10

Column Strength

200kN MACHINE SCREW JACK

a x 12mm

Note

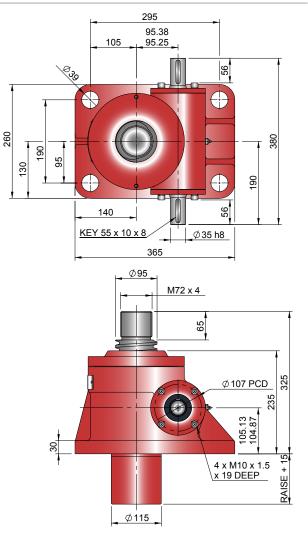
- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- 4

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

4000

3500

2500 3000

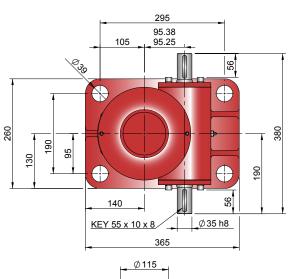

1000 1200 1400

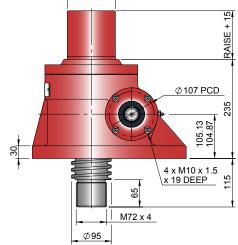
⁺ Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 5

40 **300kN Translating**

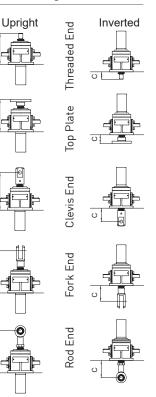
Upright EMT0300-U00

Inverted EMT0300-I00



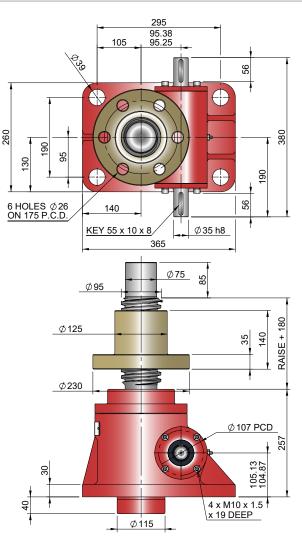

Model			EMT EMR	0300 0300	
Capacity		kN	300		
	Diame	ter (mm)	9	5	
Lifting Screw	Lead	Option	1	2	
	Leau	mm	16	32	
	Gear Ratio		10 2	/3:1	
Gear Ratio Option 1	Static Effic	iency	0.149	0.232	
	Dynamic E	fficiency	0.205	0.308	
	Gear Ratio		32:1		
Gear Ratio Option 2	Static Effic	iency	0.084	0.131	
	Dynamic E	fficiency	0.128	0.192	
Max. Input	Gear Ratio	Option 1	6.0		
power (kW)	Gear Ratio Option 2		1.9		
Start up torque at full load	Gear Ratio	Option 1	480	618	
(Nm)	Gear Ratio	Option 2	284	365	

Model			EMT0300 EMR0300			
Capacity	kN		300			
Lifting Screw	(mm)		16 32			
Turn of worm for	Gear Ratio 1	1 Turn	1.5mm	3mm		
travel of lifting screw	Gear Ratio 2	4 Turn	2mm	4mm		
Maximum Thr	Maximum Through Torque (Nm)			1440		
Lifting Screw	Restraining Torq	ue (Nm)	2805	3610		
Worm Shaft M (N)	aximum Radial	Load	21	2170		
Maximum Inp	ut Speed (rpm)		18	00		
Gear Case Ma	terial		Steel			
Waight (kg)	troko - 150mm		EMT	92.4		
Weight (kg) - stroke = 150mm			EMR	113.78		
Woight (kg)	Weight (kg) - per extra 25mm stroke			1.55		
weight (kg) - p		SUUKE	EMR	1.13		
Note: All dimensio	on in millimetres un	less other	vise stated			


Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

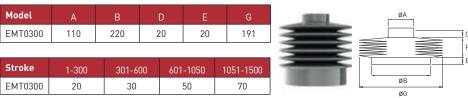
JACKS

Closed Height



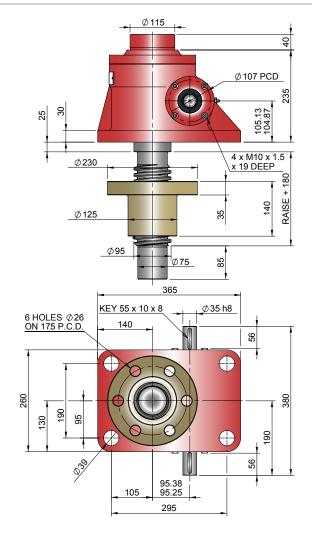
POWERJACKS

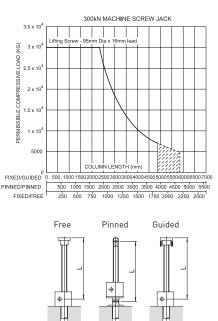
300kN Rotating


Upright EMR0300-U00

Inverted EMR0300-I00

Closed Height & Bellows Boots

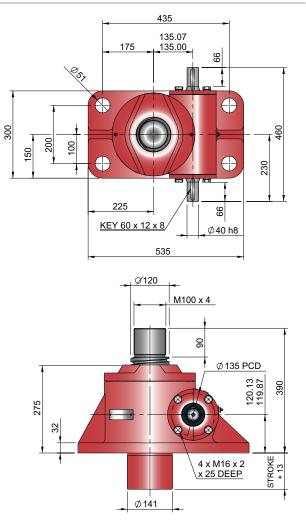

Closed	Threaded End		Top I	Plate	Clevi	s End	Fork End		Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0300	325	115	325	115	365	155	on request		on request	
Stroke (mm)		EMT0300 with Bellows Boots								
1-300	325	140	325	140	365	180	-	-	-	-
301-600	325	165	325	165	365	205	-	-	-	-
601-1050	350	165	350	165	390	205	-	-	-	-
1051-1500	375	190	375	190	415	230	-	-	-	-

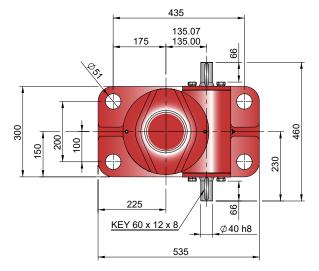


- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

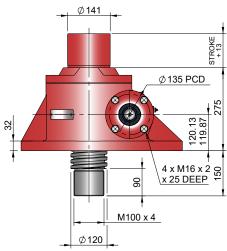
Column Strength


Fixed Pinned


Fixed

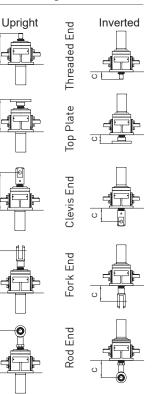
42 500kN Translating

Upright EMT0500-U00


Inverted EMT0500-I00

PO

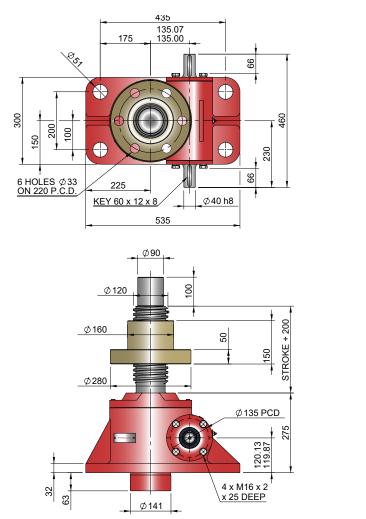
WERJACKS


Performance

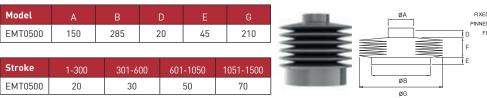
Model			EMT0500 EMR0500		
Capacity		kN	500		
	Diame	ter (mm)	12	20	
Lifting Screw	Lead	Option	1	2	
	Leau	mm	16	32	
	Gear Ratio		10 2	/3:1	
Gear Ratio Option 1	Static Effic	iency	0.132	0.215	
	Dynamic E	fficiency	0.181	0.284	
	Gear Ratio		32:1		
Gear Ratio Option 2	Static Effic	iency	0.079	0.129	
	Dynamic E	fficiency	0.120	0.188	
Max. Input	Gear Ratio	Option 1	11.25		
power (kW)	Gear Ratio	Option 2	4.5		
Start up torque at full load	Gear Ratio	Option 1	904	1113	
(Nm)	Gear Ratio	Option 2	504	618	

			EMT	0500	
Model			EMR0500		
Capacity	kN		500		
Lifting Screw	(mm)		16	32	
Turn of worm for	Gear Ratio 1	1 Turn	1.5mm	3mm	
travel of lifting screw	Gear Ratio 2	4 Turn	2mm	4mm	
Maximum Thr	Maximum Through Torque (Nm)			2712	
Lifting Screw	Restraining Torq	ue (Nm)	5645	6975	
Worm Shaft M (N)	aximum Radial I	_oad	2190		
Maximum Inp	ut Speed (rpm)		1800		
Gear Case Ma	terial		Ste	eel	
Woight (kg)	troko - 150mm		EMT	183.7	
weight (Kg) - S	stroke = 150mm		EMR	224	
Woight (kg)	or oxtra 25mm	stroko	EMT	2.48	
Weight (kg) - per extra 25mm stroke EMR			EMR	1.94	
Note: All dimension	on in millimetres un	less otherv	vise stated.		

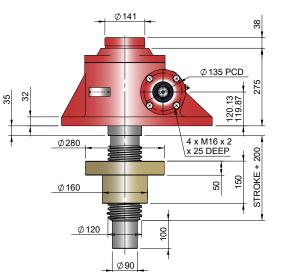
Note: All dimension in millimetres unless otherwise stated Designs subject to change without notice

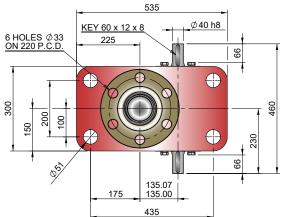

Closed Height

POWERJACKS

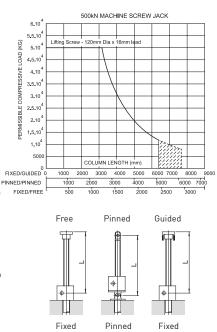

Upright EMR0500-U00

Inverted EMR0500-I00

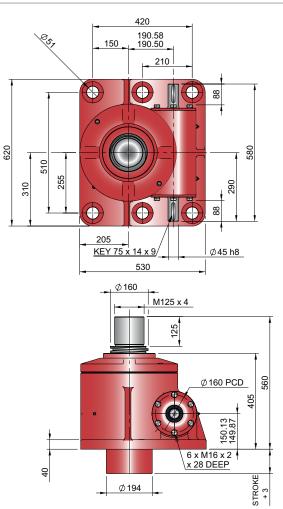


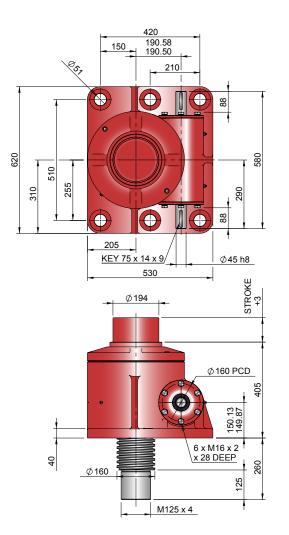

Closed Height & Bellows Boots

Closed	Threaded End		Top I	Plate	Clevis End Fork End		Rod End			
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0500	390	150	390	150	440	200	on request		on request	
Stroke (mm)		EMT0500 with Bellows Boots								
1-300	390	175	390	175	440	225	-	-	-	-
301-600	415	200	415	200	465	250	-	-	-	-
601-1050	440	225	440	225	490	275	-	-	-	-
1051-1500	465	250	465	250	515	300	-	-	-	-



- Note
 - 2
 - Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
 - 4
 - + Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 5
 - Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7


Column Strength

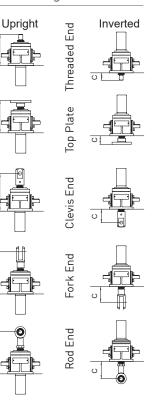


44 1000kN Translating

Upright EMT1000-U00

Inverted EMT1000-I00

WERJACKS

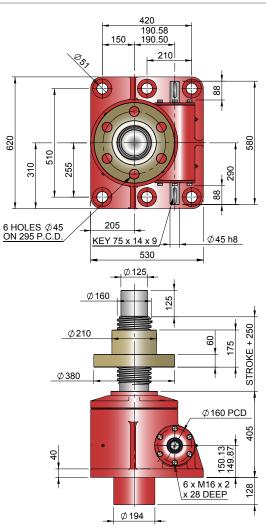

Performance

Model			EMT1000 EMR1000
Capacity		kN	1000
	Diame	ter (mm)	160
Lifting Screw	Lead	Option	1
	Leau	mm	20
	Gear Ratio		12:1
Gear Ratio Option 1	Static Effic	iency	0.131
	Dynamic E	fficiency	0.178
	Gear Ratio		36:1
Gear Ratio Option 2	Static Effic	iency	0.079
	Dynamic E	fficiency	0.123
Max. Input	Gear Ratio	Option 1	18.5
power (kW)	Gear Ratio	Option 2	8.25
Start up torque at full load	Gear Ratio	Option 1	2025
(Nm)	Gear Ratio	Option 2	1119

Model			EMT1000 EMR1000		
Capacity	kN		1000		
Lifting Screw	(mm)		2	0	
Turn of worm for	Gear Ratio 1	1 Turn	1.67	mm	
travel of lifting screw	Gear Ratio 2	4 Turn	6.67	mm	
Maximum Thr	Maximum Through Torque (Nm)				
Lifting Screw	Restraining Torq	ue (Nm)	14890		
Worm Shaft M (N)	aximum Radial	_oad	2220		
Maximum Inp	ut Speed (rpm)		18	00	
Gear Case Ma	terial		Ste	eel	
Woight (kg)	troko - 150mm		EMT	459.1	
vveight (Kg) - s	stroke = 150mm		EMR	560.4	
Weight (b) and a log OF search she			EMT	4.11	
Weight (kg) - per extra 25mm stroke EMR 3.3					
Note: All dimension	on in millimetres un	less otherv	vise stated.		

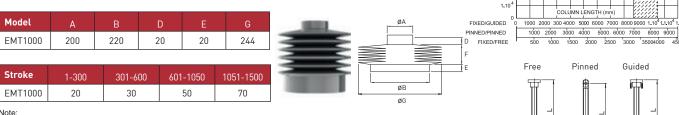
ote: All dimension in millimetres unless otherwise stated Designs subject to change without notice

Closed Height

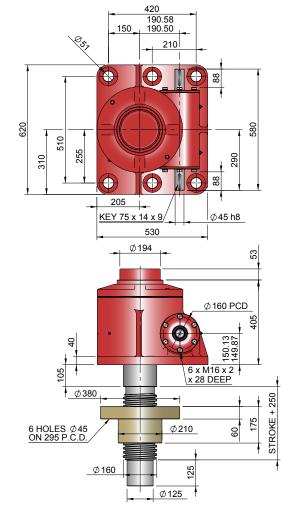

nok POWERJACKS

1000kN Rotating

2


Upright EMR1000-U00

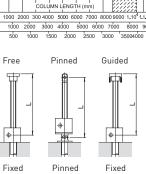
Inverted EMR1000-I00



Closed Height & Bellows Boots

Closed	Thread	led End	Top Plate		Clevi	s End	Fork	End	Rod End		
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	
EMT1000	560	260	560	260	625	325	on re	quest	on re	quest	
Stroke (mm)				EMT	1000 with	Bellows B	Boots				
1-300	560	260	560	260	625	325	-	-	-	-	
301-600	560	260	560	260	625	325	-	-	-	-	
601-1050	585	285	585	285	650	350	-			-	
1051-1500	610	310	610	310	675	375	-	-	-	-	

- Note
 - 2
 - Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
 - + Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4
 - 5
 - Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

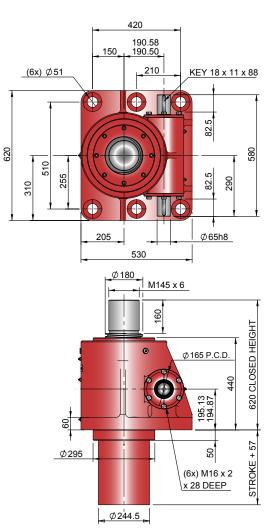


Column Strength

1.2.10 1.1.10⁵ ĝ 1.10

> 9**.**10⁴ 8.10 7.10 6.10 5.10 4 10 3**.**10⁴ 2.10

PERMISSIBLE COMPRESSIVE LOAD (

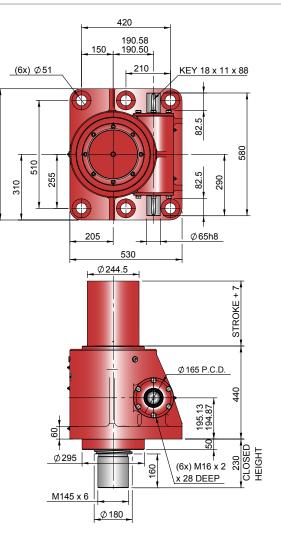

1000kN MACHINE SCREW JACK

46 1500kN Translating

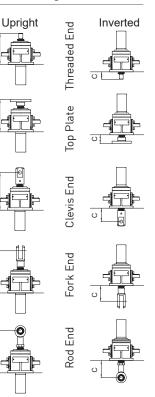
Upright EMT1500-U00

Inverted EMT1500-I00

620



Performance


Model			EMT1500 EMR1500				
Capacity		kN	1500				
	Diame	ter (mm)	180				
Lifting Screw	Lead	Option	1				
	Leau	mm	20				
	Gear Ratio		11.67:1				
Gear Ratio Option 1	Static Effic	iency	0.112				
	Dynamic E	fficiency	0.155				
	Gear Ratio		on request				
Gear Ratio Option 2	Static Effic	iency	on request				
	Dynamic E	fficiency	on request				
Max. Input	Gear Ratio Option 1		25.3				
power (kW)	Gear Ratio Option 2		Gear Ratio Option 2		Gear Ratio Option 2		on request
Start up torque	Gear Ratio	Option 1	3655				
(Nm)	Gear Ratio	Option 2	on request				

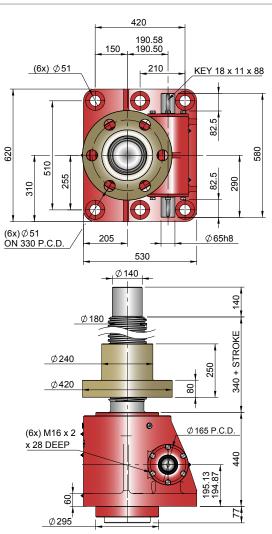
Model				1500 1500					
Capacity	kN		15	00					
Lifting Screw	[mm]		2	0					
Turn of worm for	Gear Ratio 1	1 Turn	1.71	mm					
travel of lifting screw Gear Ratio 2 4 Turn on request									
Maximum Thr	ough Torque (Nr	n)	73	10					
Lifting Screw	Restraining Torq	ue (Nm)	246	510					
Worm Shaft M (N)	aximum Radial	Load	44	50					
Maximum Inp	ut Speed (rpm)		10	00					
Gear Case Ma	terial		Ste	eel					
Mainht (ka)	1E0		EMT	563					
vveignt (Kg) - s	stroke = 150mm		EMR	708					
Woight (kg)	or outro 25mm	straka	EMT	5.80					
vvergrit (Kg) - p	EMR 4.40								
Weight (kg) - stroke = 150mm EMR 708 Weight (kg) - per extra 25mm stroke EMT 5.80									

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

Closed Height

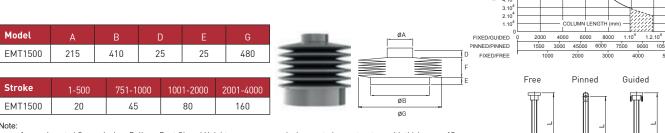
1500kN

OOK POWERJACKS


420

1500kN Rotating 47

2


Upright EMR1500-U00

Inverted EMR1500-I00

. . . 0 0 ... Cl

Closed He	eight 8	Bello	ws Bo	ots						
Closed	Thread	led End	Top I	Plate	Clevi	s End	Fork	End	Rod	End
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT1500	620	230	620	230	760	370	on re	quest	on re	quest
Stroke (mm)				EMT	1500 with	Bellows E	3oots			
1-500	620	230	620	230	760	370	-	-	-	-
501-1000	630	255	630	255	770	395	-	-	-	-
1001-2000	665	290	665	290	805	430	-	-	-	-
2001-4000	745	370	745	370	885	510	-	-	-	-

Note

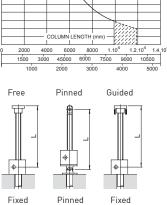
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- + Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

190.58 190.50 150 (6x) Ø51 210 KEY 18 x 11 x 88 \oplus ()A 82.5 620 580 510 ŝ 255 290 82. 310 \bigcirc A Ø65h8 205 530 Ø295 H 0 (6x) M16 x 2 Ø165 P.C.D. x 28 DEEP 467 195.13 194.87 8 50 Ø240 (6x)Ø51 390 + STROKE ON 330 P.C.D. 250 Ø420 80 _____Ø180 140

Column Strength

1 ift 1.5.10⁴ 1.4.10⁴

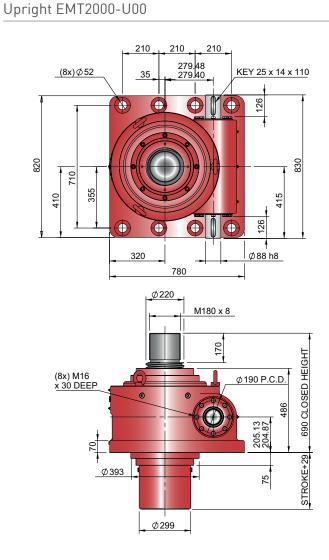

1.8.10 1.7.10 1.6.10

1.3.10[°] 1.2.10[°]

1.1.10⁴ 1.10⁴ 9.10⁴ 8.10⁴ 7.10⁴ 6.10⁴ 5.10⁴ 4.10⁴

PERMISSIBLE COMPRESSIVE LOAD (KG)

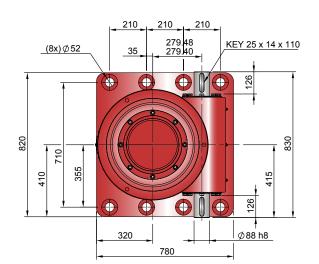
Ø140

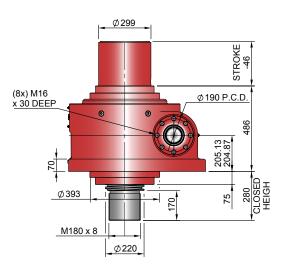


1500kN MACHINE SCREW JACK

2000kN Translating

Inverted EMT2000-I00



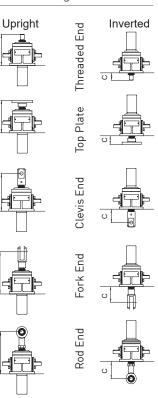

Performance

			EMT2000				
Model			EMR2000				
Capacity		kN	2000				
	Diame	ter (mm)	220				
Lifting Screw	Lead	Option	1				
	Leau	mm	24				
	Gear Ratio		18:1				
Gear Ratio Option 1	Static Effic	iency	0.109				
	Dynamic E	fficiency	0.151				
	Gear Ratio		on request				
Gear Ratio Option 2	Static Effic	iency	on request				
	Dynamic E	fficiency	on request				
Max. Input	Gear Ratio	Option 1	32.5				
power (kW)	Gear Ratio Option 2		Gear Ratio Option 2		Gear Ratio Option 2		on request
Start up torque at full load	Gear Ratio	Option 1	3895				
(Nm)	Gear Ratio	Option 2	on request				

Model			EMT EMR						
Capacity	kN		20	00					
Lifting Screw	(mm)		2	4					
Turn of worm for	Gear Ratio 1	1 Turn	1.33	mm					
travel of lifting screw Gear Ratio 2 4 Turn on request									
Maximum Thr	ough Torque (Nr	n)	77	90					
Lifting Screw	Restraining Torq	ue (Nm)	399	995					
Worm Shaft M (N)	laximum Radial	Load	78	00					
Maximum Inp	ut Speed (rpm)		60	00					
Gear Case Ma	terial		Ste	eel					
Woight (kg)	troko - 150mm		EMT	1172					
Weight (kg) - stroke = 150mm EMR 1534									
Weight (kg) - per extra 25mm stroke									
weigin (kg) - p	EMR 6.50								
Note: All dimensi	on in millimetres ur	less otherv	vise stated.						

Designs subject to change without notice

C


¢

C

 \circ -1

c

Closed Height

2000kN Rotating 49

2

Upright EMR2000-U00

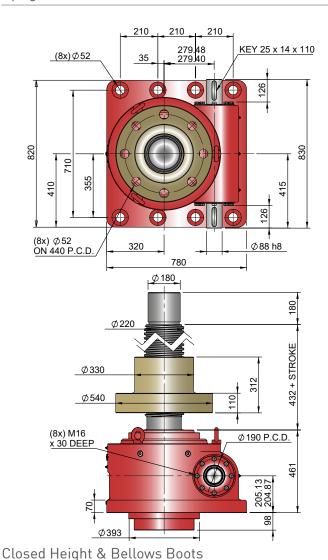
Closed

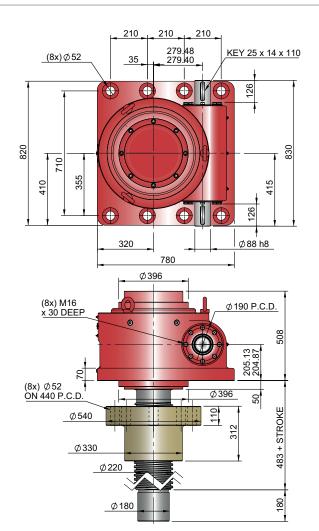
1-500

Model

EMT2000

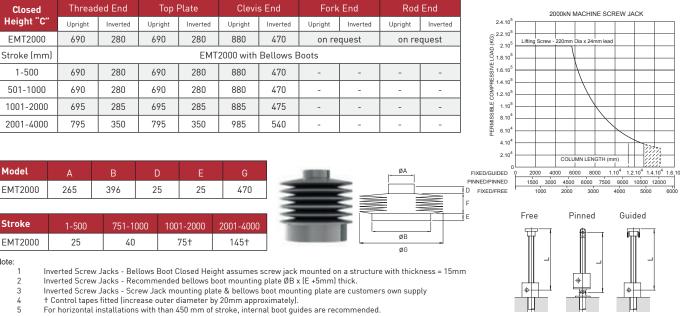
Stroke


Note


EMT2000

3

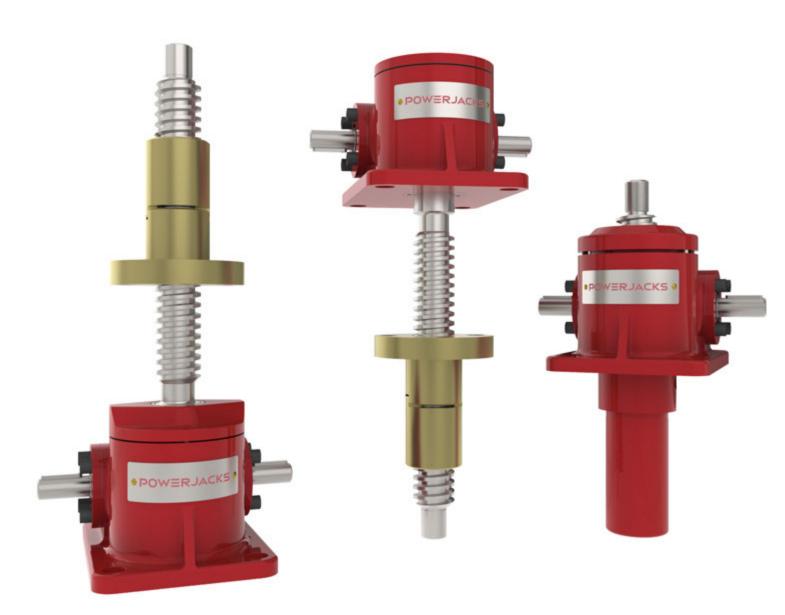
4


Inverted EMR2000-I00

Column Strength

Fixed

- Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6


Fixed Pinned

5000

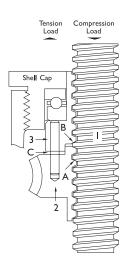
2

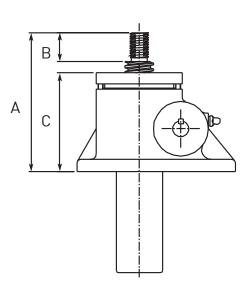
E-Series Metric Machine Screw Jack

PERFORMANCE ENHANCED VARIANTS TO SOLVE SPECIFIC APPLICATION REQUIREMENTS

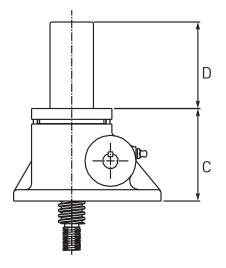
Minimise Axial Backlash for Reversing Loads

The Anti-Backlash feature provides a reliable method to regulate the axial backlash in a screw jack for applications where there is a reversal of loading from tension to compression. The amount of backlash between the screw and worm gear nut can be adjusted (adjust shell cap) to a desired amount or a practical minimum. To avoid binding and excessive wear do not adjust backlash to less than 0.025mm.


The Anti-Backlash feature also acts as a safety device, providing dual nut load carrying unit, when the worm gear becomes worn.


A visual wear indicator is available on request for all models and a "feeler" gauge can be used to measure the wear. This can be upgraded to use a sensor for wear monitoring. Consult Power Jacks for either option.

Dimensions



Inverted

Upright

How it works refer p193

The dimensions for these screw jacks are the same as the standard units except those detailed below.

Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
А	95	125	145	185	200	265	340	415	585	833	910
В	20	24	30	35	40	55	65	90	125	160	170
С	65	86	103.5	138	146.5	195	250	295	415	652	709
D	Stroke + 34	Stroke + 35	Stroke + 30	Stroke - 5	Stroke + 3	Stroke + 24	Stroke +38	Stroke + 28	Stroke + 3	Stroke + 7	Stroke - 46

Anti-Backlash

POWERJACKS

E-Series - Machine Screw Jacks - Anti-Backlash - Performance

		Model		EMT00 EMT00			10-U0A 110-I0A	EMT00 EMT00	25-U0A 125-I0A		50-U0A)50-I0A	EMT01 EMT01	00-U0A 00-I0A
Capac	ity		kN	Į	ō	1	0	2	5	5	i0	1(00
			mm	1	6	2	0	3	0	4	0	55	
Lifting So	crew ¹	المعط	Option	1	2	1	2	1	2	1	2	1	2
		Lead	mm	3	6	5	10	6	12	9	18	12	24
			Option 1	5	:1	5	:1	6	:1	6	:1	8	:1
Gear Ra	atios		Option 2	20):1	20):1	24	4:1	24	4:1	24	⊧:1
Max. In	put	Gear	Ratio Option 1	0.	25	0.3	375	1.	.5	3	.0	3.75	
Power (kW)	Gear	Ratio Option 2	0.	12	0.	19	0.3	375	0.	0.55		125
Start		Gear	Ratio Option 1	2.9	3.8	7.8	10.9	23.5	31.3	62.3	84.9	129.2	147.8
torque a load (N		Gear	Ratio Option 2	1.3	1.7	3.6	5.1	9.8	13.0	28.5	38.8	66.8	90.4
Weight (k	(g) - sti	oke = 150	Jmm	1.	48	2.	72	8.	62	16	.78	26	.12
Weight (k	(g) per	extra 25n	nm	0.0)73	0.	13	0.	21	0.	32	0.	57
Gear		Gea	r Ratio	5	:1	5	:1	6	:1	6	:1	8	:1
Ratio Option	Scr	ew Jack S	Static Efficiency	0.164	0.249	0.203	0.291	0.169	0.254	0.192	0.281	0.185	0.273
1	Scre	w Jack Dy	namic Efficiency	0.216	0.317	0.263	0.365	0.222	0.322	0.251 0.356		0.243	0.325
Gear		Gea	r Ratio	20):1	20):1	24	.:1	24	4:1	24	ı:1
Ratio	Scr	ew Jack S	Static Efficiency	0.090	0.137	0.109	0.157	0.102	0.153	0.105	0.154	0.119	0.176
Option 2	Scre	w Jack Dy	namic Efficiency	0.133	0.195	0.159	0.220	0.150	0.217	0.154	0.218	0.172	0.245

		Model		EMT02 EMT02	00-U0A :00-I0A		300-U0A)300-I0A		500-U0A 1500-I0A	EMT1000-U0A EMT1000-I0A	EMT1500-U0A EMT1500-I0A	EMT2000-U0A EMT2000-I0A
Capac	city		kN	20	00		300	Ę	500	1000	1500	2000
			mm	6	5		95		120	160	180	220
Lifting S	crew ¹	Laad	Option	1	2	1	2	1	2	1	1	1
		Lead	mm	12	24	16	32	16	32	20	20	24
Gear Ra			Option 1	8	:1	10	2/3:1	10	2/3:1	12:1	11 2/3:1	18:1
Gear Ra	atios		Option 2	24	i:1	:	32:1	3	32:1	36:1	N/A	N/A
Max. In	nput	Gear	Ratio Option 1	3.	75		6.0	1	1.25	18.5	25.3	32.5
Power ((kW)	Gear	Ratio Option 2	1.1	25		1.9		4.5	8.25	N/A	N/A
Start		Gear	Ratio Option 1	281.2	368.5	534	687	1000	1236	2243	4061	4328
torque a load (N		Gear	Ratio Option 2	153.7	201.4	315	405	568	702	1244	N/A	N/A
Weight (k	kg) - sti	roke = 150)mm	4	9		91		209	610	620	1290
Weight (kg) per	extra 25m	۱m	0.	86		1.58	2	2.49	4.31	5.80	9.00
Gear		Gea	r Ratio	8	:1	10	2/3:1	10	2/3:1	12:1	11 2/3:1	18:1
Ratio Option	Scr	ew Jack S	Static Efficiency	0.170	0.259	0.134	0.209	0.119	0.193	0.118	0.100	0.098
1	Scre	w Jack Dy	namic Efficiency	0.226	0.332	0.184	0.277	0.163	0.256	0.160	0.139	0.136
Gear		Gea	r Ratio	24	:1		32:1	3	32:1	36:1	N/A	N/A
Ratio Option	Scr	ew Jack S	Static Efficiency	0.104	0.158	0.076	0.118	0.070	0.113	0.071	N/A	N/A
2	Scre	w Jack Dy	namic Efficiency	0.151	0.222	0.115	0.173	0.105	0.165	0.106	N/A	N/A

Note

1. All metric machine screws have a trapezoidal thread form.

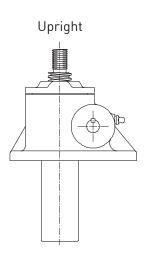
2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

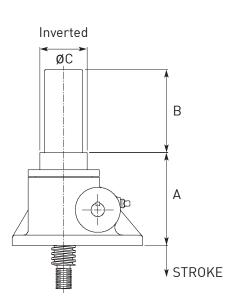
3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.

54 Anti-Rotation (Keyed)

Linear Movement for Rationally Unconstrained Loads


The Anti-Rotation feature for translating screw jacks stops the lifting screw from rotating without the need for end fixing. This is done by keying the lifting screw.


Benefits:

- Compact unit integrates anti-rotation into gearbox
- Dimensions are the same as the standard translating screw jack
- Standard round cover pipe for easy installation
- Proven industrial anti-rotation design

Dimensions

Dimensions for Upright Models with Anti-Rotation (Keyed)

Dimensions for upright E-Series machine screw jacks with anti-rotation (keyed) mechanism are the same as the standard screw jacks without the feature.

Dimensions for Inverted Models with Anti-Rotation (Keyed)

The dimensions for these screw jacks are the same as the standard units except those detailed below.

Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
А	79	78	125.5	159	167.5	210	267	307	445	440	486
В	Stroke + 9	Stroke + 35	Stroke + 30	Stroke + 20	Stroke + 3	Stroke -1	Stroke + 15	Stroke + 13	Stroke + 3	Stroke + 7	Stroke - 46
øC	35	N/A	60	75	90	102	141.5	180	236	295	396

POWERJACKS

Anti-Rotation (Keyed)

2

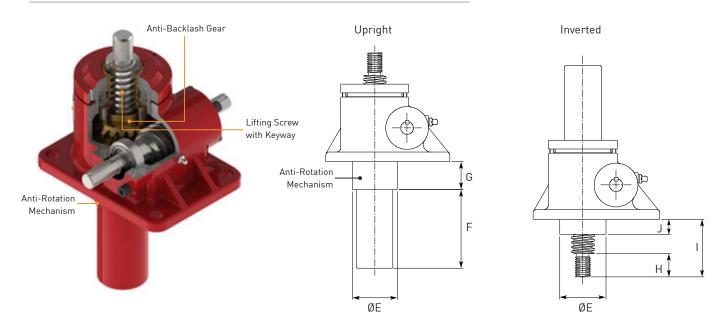
E-Series - Machine Screw Jacks - Anti-Rotation (Keyed) - Performance

		Model		EMT00 EMT00		EMT00 EMT00	10-UK0 10-IK0	EMT00: EMT00			50-UK0 150-IK0	EMT01 EMT01	00-UK0 00-IK0
Capac	city		kN	Į	5	1	0	2	5	5	0	10	00
			mm	1	6	2	0	3	0	4	.0	5	5
Lifting S	crew ¹	Lead	Option	1	2	1	2	1	2	1	2	1	2
		Leau	mm	3	6	5	10	6	12	9	18	12	24
Gear Ra			Option 1	5	:1	5	:1	6:	:1	6	:1	8	:1
Gear Ra	atios		Option 2	20	1:1	20	1:1	24	:1	24	::1	24	:1
Max. In	nput	Gear	Ratio Option 1	0.	25	0.3	75	1.	.5	3	.0	3.	75
Power	(kW)	Gear	Ratio Option 2	0.	12	0.	19	0.3	75	0.	55	1.1	25
Start		Gear	Ratio Option 1	2.9	3.8	7.1	9.9	20.8	27.7	58.7	80	121.7	164.7
torque a load (N		Gear	Ratio Option 2	1.3	1.7	3.1	4.4	9.2	12.2	26.8	36.6	63.6	86.1
Weight (kg) - sti	-oke = 150)mm	1.	03	2.	27	8.	17	15	.88	24	.72
Weight (kg) per	extra 25n	nm	0.0	173	0.	13	0.1	21	0.	32	0.	57
Gear		Gea	r Ratio	5	:1	5	:1	6:	:1	6	:1	8	:1
Ratio Option	Scr	ew Jack S	Static Efficiency	0.182	0.277	0.224	0.322	0.191	0.287	0.203	0.299	0.196	0.290
1	Scre	w Jack Dy	ynamic Efficiency	0.240	0.352	0.291	0.403	0.251	0.364	0.267	0.378	0.258	0.368
Gear		Gea	r Ratio	20	1:1	20	1:1	24	:1	24	::1	24	:1
Ratio	Scr	ew Jack S	Static Efficiency	0.103	0.157	0.127	0.182	0.108	0.162	0.111	0.163	0.125	0.185
Option 2	Scre	w Jack Dy	namic Efficiency	0.152	0.223	0.184	0.255	0.159	0.230	0.164	0.232	0.180	0.257

		Model		EMT02 EMT02	00-UK0 :00-IK0		00-UK0 800-IK0		00-UK0 600-IK0	EMT1000-UK0 EMT1000-IK0	EMT1500-UK0 EMT1500-IK0	EMT2000-UK0 EMT2000-IK0
Capac	city		kN	20	00	3	00	51	00	1000	1500	2000
			mm	6	5	9	25	1:	20	160	180	220
Lifting S	crew ¹	Land	Option	1	2	1	2	1	2	1	1	1
		Lead	mm	12	24	16	32	16	32	20	20	24
0			Option 1	8	:1	10 2	2/3:1	10 2	2/3:1	12:1	11 2/3:1	18:1
Gear Ra	atios		Option 2	24	::1	32	2:1	32	2:1	36:1	N/A	N/A
Max. In	nput	Gear	Ratio Option 1	3.	75	6	.0	11	.25	18.5	25.3	32.5
Power	(kW)	Gear	Ratio Option 2	1.1	25	1	.9	4	.5	8.25	N/A	N/A
Start		Gear	Ratio Option 1	275.3	360.7	506	651	947	1170	2125	3847	4100
torque a load (N		Gear	Ratio Option 2	144	188.7	298	384	526	650	1126	N/A	N/A
Weight (k	kg) - sti	roke = 150)mm	4	5	8	36	1	95	553	563	1172
Weight (k	kg) per	extra 25n	nm	0.	86	1.	58	2.	49	4.31	5.80	9.00
Gear		Gea	r Ratio	8	:1	10 2	2/3:1	10 2	2/3:1	12:1	11 2/3:1	18:1
Ratio Option	Scr	ew Jack S	Static Efficiency	0.173	0.265	0.142	0.220	0.126	0.204	0.125	0.106	0.103
1	Scre	w Jack Dy	namic Efficiency	0.230	0.34	0.195	0.292	0.172	0.270	0.169	0.147	0.143
Gear		Gea	r Ratio	24	::1	32	2:1	32	2:1	36:1	N/A	N/A
Ratio Option	Scr	ew Jack S	Static Efficiency	0.111	0.169	0.080	0.124	0.076	0.122	0.079	N/A	N/A
2	Scre	w Jack Dy	namic Efficiency	0.161	0.237	0.121	0.182	0.144	0.178	0.117	N/A	N/A

Note

1. All metric machine screws have a trapezoidal thread form.


2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.

56 Anti-Backlash & Anti-Rotation (Keyed)

Combine Anti-Backlash & Anti-Rotation in One Screw Jack

Dimensions for E-Series Machine Screw Jacks with Anti-Backlash & Anti-Rotation

Model	EMT0005-UKA EMT0005-IKA	EMT0010-UKA EMT0010-IKA	EMT0025-UKA EMT0025-IKA	EMT0050-UKA EMT0050-IKA	EMT0100-UKA EMT0100-IKA	EMT0200-UKA EMT0200-IKA
ØE	36	38	60	75	90	102
F	Stroke + 9	Stroke + 9	Stroke + 30	Stroke + 20	Stroke + 28	Stroke + 24
G	25	30	37	40	37	58
Н	20	24	30	35	30	55
I	40	45	55	65	55	110
J	16	16	19.5	24	19.5	39

Model	EMT0300-UKA EMT0300-IKA	EMT0500-UKA EMT0500-IKA	EMT1000-UKA EMT1000-IKA	EMT1500-UKA EMT1500-IKA	EMT2000-UKA EMT2000-IKA
ØE	138	206	264	295	396
F	Stroke + 15	Stroke + 13	Stroke + 28	Stroke + 7	Stroke - 15
G	73	58	180	50	201
Н	65	55	125	160	170
1	115	110	405	286	395
J	43	39	145	106	200

2

POWERJACKS

E-Series - Machine Screw Jacks - Anti-Backlash & Anti-Rotation (Keyed) - Performance

		Model			05-UKA 05-IKA	2	10-UKA 10-IKA	EMT002 EMT00			50-UKA 150-IKA	2	00-UKA 00-IKA
Capac	city		kN	Į	5	1	0	2	5	5	i0	1	00
			mm	16		2	0	3	0	4	0	5	5
Lifting S	crew ¹	المعط	Option	1	2	1	2	1	2	1	2	1	2
	Lead		mm	3	6	5	10	6	12	9	18	12	24
0			Option 1	5:1		5	:1	6:	:1	6	:1	8	:1
Gear Ra	atios	Option 2		20:1		20	1:1	24	:1	24	4:1	24	:1
Max. Ir	nput	Gear Ratio Option 1		0.25		0.375		1.5		3.0		3.	75
Power	(kW)	Gear	Ratio Option 2	0.12		0.19		0.375		0.55		1.1	25
Start		Gear	Ratio Option 1	3.1	4	8.3	11.5	24.8	33	65.6	89.3	136	184
torque a load (N		Gear	Ratio Option 2	1.4	1.8	3.8	5.3	10.3	13.7	30	40.9	70.3	958.2
Weight (kg) - sti	roke = 15	0mm	1.48		2.72		8.62		16.78		26.12	
Weight (kg) per	extra 25r	nm	0.0	173	0.13		0.21		0.32		0.57	
Gear		Gear Ratio		5	:1	5	:1	6:	:1	6	:1	8	:1
Ratio Option	Scr	Screw Jack Static Efficiency		0.156	0.237	0.193	0.277	0.161	0.241	0.182	0.267	0.176	0.259
1	Scre	rew Jack Dynamic Efficiency		0.205	0.301	0.250	0.346	0.211	0.306	0.239	0.338	0.231	0.330
Gear	oodi Hatto		20):1	20	1:1	24	:1	24	4:1	24	.:1	
Ratio Option	Scr	ew Jack	Static Efficiency	0.086	0.130	0.104	0.149	0.097	0.145	0.100	0.146	0.113	0.167
2	Scre	w Jack D	ynamic Efficiency	0.126	0.185	0.151	0.209	0.142	0.206	0.146	0.208	0.163	0.233

		Model		EMT020 EMT02			00-UKA 100-IKA		00-UKA 500-IKA	EMT1000-UKA EMT1000-IKA	EMT1500-UKA EMT1500-IKA	EMT2000-UKA EMT2000-IKA
Сарас	city		kN	20	00	30	300		00	1000	1500	2000
			mm	65		95		120		160	180	220
Lifting S	crew ¹	Lead	Option	1	2	1	2	1	2	1	1	1
			mm	12	24	16	32	16	32	20	20	24
CoorDe	Gear Ratios		8:	1	10 2	2/3:1	10 2	2/3:1	12:1	11 2/3:1	18:1	
Gear Ka	ear Ratios Option 2		24	:1	32	2:1	32	2:1	36:1	N/A	N/A	
Max. In	Max. Input Gear Ratio Option 1		3.75		6	.0	11	.25	18.5	25.3	32.5	
Power ((kW)	Gear	Ratio Option 2	1.1	1.125 1.9		4	.5	8.25	N/A	N/A	
Start		Gear	Ratio Option 1	296	387.9	562	723	1052	1301	2361	4275	4555
torque a load (N		Gear	Ratio Option 2	161.8	387.9	331	426	598	739	1309	N/A	N/A
Weight (k	kg) - sti	roke = 150	lmm	49		91		209		610	620	1290
Weight (kg) per	extra 25m	ım	0.8	36	1.	1.58		49	4.31	5.80	9.00
Gear		Gea	r Ratio	8:	1	10 2	2/3:1	10 2	2/3:1	12:1	11 2/3:1	18:1
Ratio Option	Ratio Screw Jack Static Efficiency		0.161	0.246	0.128	0.198	0.113	0.184	0.112	0.096	0.093	
1	1 Screw Jack Dynamic Efficiency		0.214	0.316	0.175	0.263	0.155	0.243	0.152	0.132	0.129	
Gear			Gear Ratio		:1	32	2:1	32	2:1	36:1	N/A	N/A
Ratio Option	Scr	ew Jack S	Static Efficiency	0.098	0.150	0.072	0.112	0.067	0.108	0.068	N/A	N/A
2	Scre	w Jack Dy	mamic Efficiency	0.143	0.211	0.109	0.164	0.100	0.157	0.100	N/A	N/A

Note

1. All metric machine screws have a trapezoidal thread form.

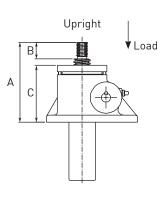
2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

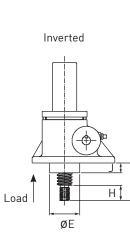
3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

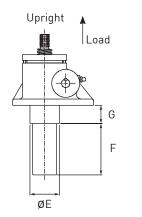
4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.

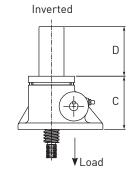
Extra Safety for Critical Applications

Power Jacks machine screw jacks can be fitted with a safety nut, which provides 2 safety roles:


- In the event of excessive wear on the nut thread the load will be transferred from the standard nut to the safety nut. This will also provide visual wear indication as the gap between the safety nut decreases to zero as the standard lifting nut wears.
- 2. In the unlikely event of catastrophic nut thread failure the safety nut will sustain the load. The safety of industrial and human cargo is therefore improved.

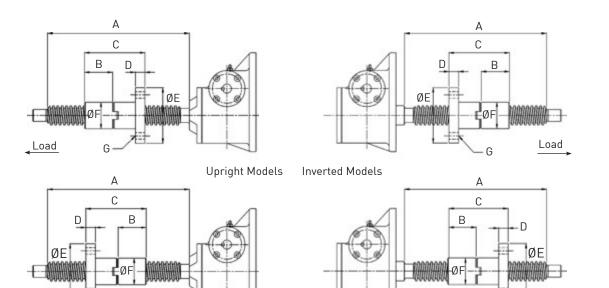

There are several configurations for each safety nut device as they only work in one load direction. For this reason when ordering please supply a sketch of your application showing load directions.


Translating Screw Jacks with Safety Nuts


Compression Safety Nut

Tension Safety Nut

Dimensions - Translating Screw

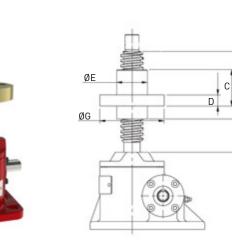

Model	Rating (kN)	А	В	С	D	ØE	F	G	Н	I	J
EMT0005	5					On Re	equest				
EMT0010	10	125	24	86	Stroke + 35	38	Stroke + 9	30	24	45	16
EMT0025	25	145	30	104	Stroke + 30	60	Stroke +30	37	30	55	20
EMT0050	50	185	35	138	Stroke - 5	75	Stroke + 20	40	35	65	24
EMT0100	100	200	40	146	Stroke +3	90	Stroke + 28	48	40	80	30
EMT0200	200	265	55	195	Stroke +24	102	Stroke + 24	58	55	110	39
EMT0300	300					On Re	equest				
EMT0500	500					On Re	equest				
EMT1000	1000		On Request								
EMT1500	1500		On Request								
EMT2000	2000					On Re	equest				

G –

Load

Safety Nuts 59

Rotating Screw Jacks with Safety Nuts

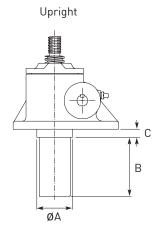

Dimensions - Rotating Screw

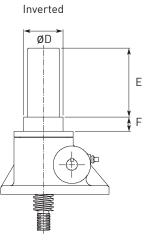
Load

G

Model	Rating (kN)	А	В	С	D	ØE	ØF	G		
EMR0005	5				On Request					
EMR0010	10	Stroke + 76	30	66.5	12	80	35	4 x Ø11, Ø57 PCD		
EMR0025	25	Stroke + 95	33.5	75	15	90	40	4 x Ø13.5, Ø65 PCD		
EMR0050	50	Stroke + 140	58	125	20	115	55	4 x Ø18, Ø85 PCD		
EMR0100	100	Stroke + 170	67	145	25	160	80	4 x Ø22, Ø120 PCD		
EMR0200	200	Stroke + 170	67	145	25	185	90	4 x Ø26, Ø135 PCD		
EMR0300	300	Stroke + 310	126	270	35	230	125	6 x Ø26, Ø175 PCD		
EMR0500	500	Stroke + 335	130	284	50	280	160	6 x Ø33, Ø220 PCD		
EMR1000	1000	Stroke + 410	155	335	60	380	210	6 x Ø45, Ø295 PCD		
EMR1500	1500		On Request							
EMR2000	2000		On Request							

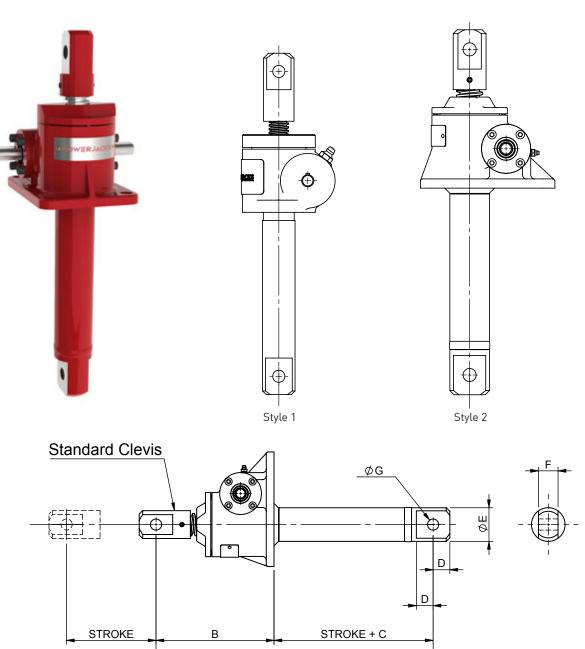
60 Double Hub Nut for Rotating Screw Jacks




Model	А	В	С	D	ØE	F	ØG
EMR0010	Stroke + 55	40	25	10	25	4 x Ø9, Ø42 PCD	60
EMR0010	Stroke + 61	52	35	12	35	4 x Ø11, Ø57 PCD	80
EMR0025	Stroke + 80	60	40	15	40	4 x Ø13.5, Ø65 PCD	90
EMR0050	Stroke + 100	85	65	20	55	4 x Ø18, Ø85 PCD	115
EMR0100	Stroke + 120	95	75	25	80	4 x Ø22, Ø120 PCD	160
EMR0200	Stroke + 120	95	75	25	90	4 x Ø26, Ø135 PCD	185
EMR0300	Stroke + 200	160	140	35	125	6 x Ø26, Ø175 PCD	230
EMR0500	Stroke + 225	175	150	50	160	6 x Ø33, Ø220 PCD	280
EMR1000	Stroke + 275	200	175	60	210	6 x Ø45, Ø295 PCD	380
EMR1500				On Request			
EMR2000				On Request			

E

Secondary Guide - Greater Lateral Rigidity for Lifting Screw


Secondary Guiding for the screw for greater lateral rigidity aiding screw guidance and improved side load resilience.

Dimensions for Screw Jacks with Secondary Guides

Mode	ι	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
	ØA	36	38	60	70	90	100	138	155	225		
Upright	В	Stroke + 34	Stroke + 34	Stroke + 30	Stroke + 20	Stroke + 29	Stroke + 24	Stroke + 40	Stroke + 38	Stroke + 50		
	С	16	20	20	18	20	20	38	38	65	Request	Request
	ØD	36	On Request	60	70	90	100	138	155	est	On Req	On Req
Inverted	E	Stroke + 34	Stroke + 34	Stroke + 30	Stroke + 20	Stroke + 29	Stroke + 24	Stroke + 40	Stroke + 38	Request	0	0
	F	16	On Request	20	18	20	20	38	38	On		

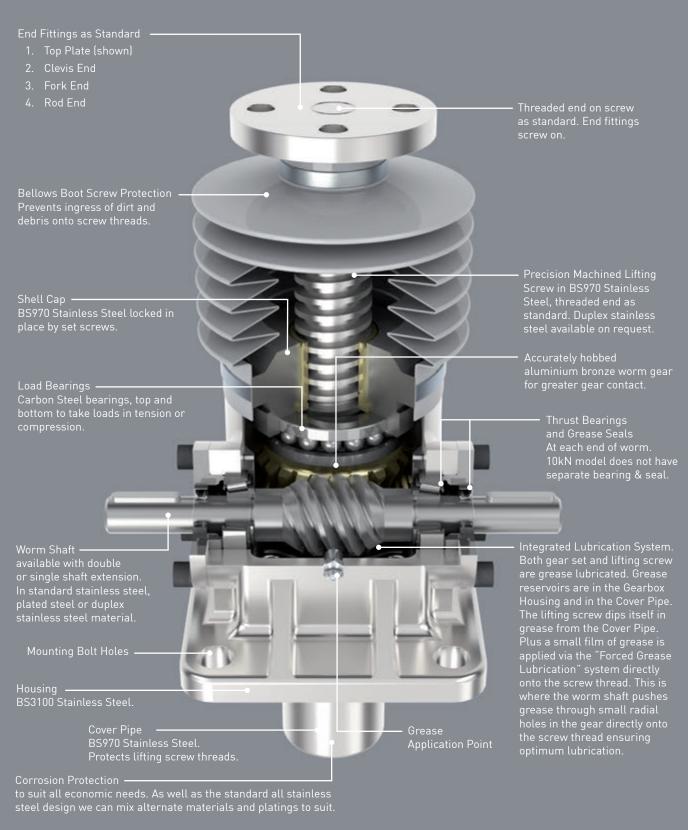
Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000
Capacity (kN)	5	10	25	50	100	200	300	500	1000
Style	1	1	2	2	2	2	2	2	
A	150	180	213	260	352	428	492	570	
В	115	145	170	210	247	313	367	440	
С	35	35	43	50	105	115	125	130	
D	15	20	23	30	33	40	60	75	On Request
E	26.7	33.4	48.3	60.3	73	102	133	168	
F	15	20	30	35	40	50	80	110	
ØG	10	12	16	20	22	30	45	60	
lax Stroke at Rated .oad (Compression)	220	175	352	420	593	592	1338	1920	

STROKE + A

Note: All dimensions in millimetres unless otherwise stated.

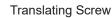
3

E-Series Stainless Steel Screw Jacks


DESIGNED FOR USE IN HARSH & CORROSIVE ENVIRONMENTS CAPACITIES - 10KN TO 1000KN AS STANDARD.

TRANSLATING SCREW JACKS

- Stainless Steel Machine Screw Jacks
- Capacities 10kN to 1000kN as standard
- Translating and Rotating Screw in Upright and Inverted types
- Precision Worm Gear Set
- 2 Gear ratios and 1 screw lead as standard
- Anti-backlash and anti-rotation (keyed) options
- 6 mounting options including trunnion and double clevis
- Special custom designs available



The stainless steel screw jacks are ideal for use in harsh or corrosive environments such as marine, nuclear, water, food processing or paper making machinery, where standard materials may be inadequate.

E-Series - Stainless Steel Screw Jack

POWERJACKS

Rotating Screw

Inverted

Typical Applications

Stainless Steel Machine Screw Jacks are typically used in harsh or corrosive environments or those with a regular wash down requirement. Industries such as Marine, Water Treatment, Nuclear, Food Processing, Offshore, Pulp and Paper use stainless steel screw jacks. For each application, variants with different material grades or plated components can be used, tailoring the product for the specific application and budget.

Standard Designs

Stainless steel E-Series machine screw jacks are available in translating and rotating screw designs in capacity sizes from 10kN to 1000kN. The design is optimised for reliable performance in some of the most arduous environments. Plus there is a large selection of standard accessories (section-7) and options so you can configure a standard design that is just right for your application. These options include Anti-Backlash, Anti-Rotation (Keyed) and Safety Nut designs.

Special Designs

We can fully customise our screw jacks so that your application can be the best.

Customisation can be anything from a small modification such as an extra bolt hole on an end fitting to a completely new design of screw jack based on our class leading technology.

For more details please see the Special Screw Jack information in Section-8 or contact us today with your requirements. Our team are looking forward to working with you.

Selecting the Right Screw Jack

Consider all application constraints then choose a product that looks suitable for the intended application. Calculate the power and torque requirements. This is a 5 step process:

- Screw Jack Input Speed (RPM)
- Operating Input Power (kW)
- **Operating Input Torque (Nm)**
- Screw Jack Start-up Torque (Nm)
- Mechanical Power and Torque Check

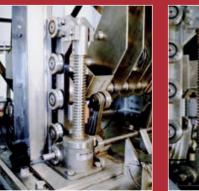
Systems

The screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearbox , drive shafts, couplings, plummer blocks and motion control devices.

The use of bevel gearboxes allows the distribution of drive throughout a jacking system. The gearboxes come in 2,3 and 4 way drive types. See the Bevel Gearbox Section-10 for more details.

Bevel gearboxes and other system components can also be supplied in stainless steel or other corrosion resistant designs.

Two of the most popular system configurations are the 'H' and 'U' configured jacking systems. Remember that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.


If multiple machine screw jacks are connected in a mechanically linked system then the complete system may be considered self-locking. If you would like this checked consult Power Jacks. Alternatively, to be sure, include a brake on the system either as a stand alone device or as a brake motor.

66 Application Focus

POWERJACKS

DRUM POSTING EQUIPMENT (DPE)

Dunreay cementation plant waste transfer facility. Raise and lower drum transfer table.

Two stainless steel E-Series translating machine screw jacks 100kN capacity with 24:1 gear ratio and 1805mm stroke connected in series by a stainless steel drive shaft and geared couplings.

For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

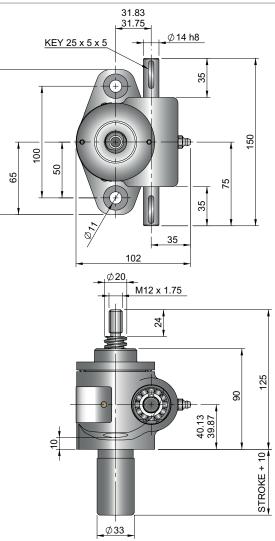
Application Focus 67

Stainless Steel Screw Jack Standard Performance

Model			EMT0010 EMR0010	EMT0025 EMR0025	EMT0050 EMR0050	EMT0100 EMR0100	EMT0200 EMR0200	EMT0300 EMR0300	EMT0500 EMR0500	EMT1000 EMR1000
Capacity		kN	10	25	50	100	200	300	500	1000
Sustaining	Standard 316 Lifting	Tension	6.6	16.5	33	66	132	200	333	666
Capacity (kN)	Screw	Compression	10	25	50	100	200	300	500	1000
	Duplex Lifting Screw Stainless Steel Worm		10	25	50	100	200	300	500	1000
		Steel Worm haft	3.3	8.25	16.5	33	66	100	167	333
Operating Capacity (kN)	Duplex or Plated Worm	Tension	6.6	16.5	33	66	132	200	333	666
	Shaft with 316 Screw	Compression	10	25	50	100	200	300	500	1000
		Plated Worm Duplex Screw	10	25	50	100	200	300	500	1000
	Diame	eter (mm)	20	30	40	55	65	95	120	160
Lifting Screw	Lea	d (mm)	5	6	9	12	12	16	16	20
Gear ratios	Ор	tion 1	5:1	6:1	6:1	8:1	8:1	10 2/3	10 2/3:1	12:1
Gear ratios	Ор	tion 2	20:1	24:1	24:1	24:1	24:1	32:1	32:1	36:1
Turn of worm	Ratio Option Option 1	1 Turn	1mm	1mm	1.5mm	1.5mm	1.5mm	1.5mm	1.5mm	1.67mm
for travel of lifting screw	Ratio Option Option 2	4 Turn	1mm	1mm	1.5mm	2mm	2mm	2mm	2mm	2.22mm
Max. Input	Gear Ra	tio Option 1	0.375	1.5	3.0	3.75	3.75	6.0	11.25	18.5
power (kW)	Gear Ra	tio Option 2	0.19	0.375	0.55	1.125	1.125	1.9	4.5	8.25
Start up torque	Gear Ra	tio Option 1	6.8	19.8	56	115.9	263.8	480	904	2025
at full load (Nm)	Gear Ra	tio Option 2	3	8.7	25.5	60.5	137	284	504	1119
Weight (kg)	E	MT	2.36	8.45	14.9	24.3	42.4	92.4	183.7	459.1
- stroke = 150mm	E	MR	2.6	8.85	16.54	28.8	49.58	113.78	224	560.4
Weight (kg) per	E	MT	0.11	0.21	0.32	0.58	0.84	1.55	2.48	4.11
extra 25mm	E	MR	0.05	0.11	0.19	0.36	0.52	1.13	1.94	3.38
	Gea	r Ratio	5:1	6:1	6:1	8:1	8:1	10 2/3:1	10 2/3:1	12:1
Gear Ratio Option 1		Jack Static ciency	0.233	0.201	0.213	0.206	0.181	0.149	0.132	0.131
0,00011		ck Dynamic ciency	0.306	0.264	0.281	0.272	0.242	0.205	0.181	0.178
		r Ratio	20:1	24:1	24:1	24:1	24:1	32:1	32:1	36:1
Gear Ratio		Jack Static ciency	0.130	0.115	0.117	0.132	0.116	0.084	0.079	0.079
Option 2	Screw Ja	ck Dynamic ciency	0.194	0.167	0.172	0.190	0.169	0.128	0.120	0.123

Notes

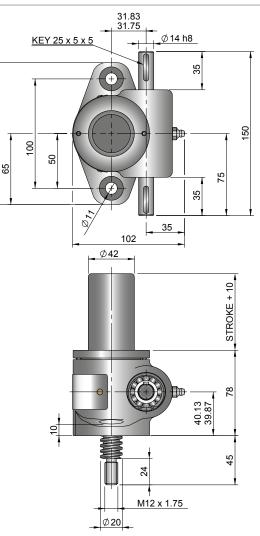
- 1. All metric stainless steel machine screws have a trapezoidal thread form, single start as standard. Other screw lead options are available on request.
- 2. Based on operating capacity for loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.
- 3. Efficiency values for standard grease lubricated worm gear box and lifting screw



Upright EMT0010-V00

130

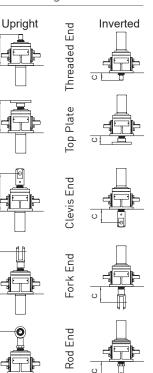
130



Performance

Model					0010 0010
Capacity (kN	1)			1	0
Sustaining	Standard 316	T	ension	6	.6
Capacity	Lifting Screw	C	Compression	1	0
(kN)	Duplex Lifting S	icr	ew	1	0
	Standard 316 W	or	m Shaft	3	.3
Operating	Duplex or Plate Worm Shaft wit		Tension	6	.6
Capacity (kN)	316 Screw		Compression	10	
	Duplex or Plate Shaft with Dupl	1	0		
	Diamet	20			
Lifting	Lead		Option	1	2
Sciew	Lead		mm	5	10
	Gear Ratio			5	:1
Gear Ratio Option 1	Screw Jack Stat	tic	Efficiency	0.233	0.339
	Screw Jack Dyn	0.306	0.424		
O D I	Gear Ratio	20):1		
Gear Ratio Option 2	Screw Jack Stat	0.130	0.192		
	Screw Jack Dyn	ar	nic Efficiency	0.194	0.268

Model			EMT EMR	0010 0010		
Capacity	kN		10			
Lifting Screw	Lead (mm)		5	10		
Turn of worm for	Gear Ratio 1	1 Turn	1mm	2mm		
travel of lifting screw	Gear Ratio 2	4 Turn	1mm 2mm			
Maximum Thr	ough Torque (Nr	m)	20			
Lifting Screw	Restraining Torc	jue (Nm)	22 30			
Worm Shaft M (N)	aximum Radial	Load	32	25		
Maximum Inp	ut Speed (rpm)		1800			
Gear Case Ma	terial		Stainles	ss Steel		
Waisht (La)	tealer 1E0		EMT	2.36		
vveignt (kg) - s	Veight (kg) - stroke = 150mm					
Wainht (La)	ataslas	EMT	0.11			
Weight (kg) - p	SUTOKE	EMR	0.05			


Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

JACKS

DO

Closed Height

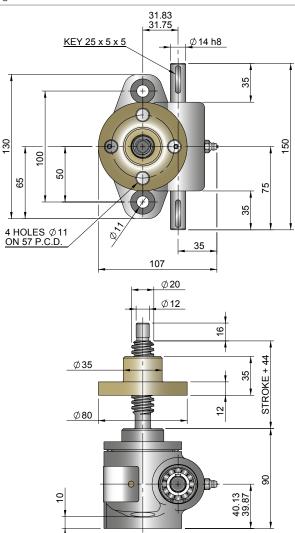
Ø38

10kN Rotating 69

6

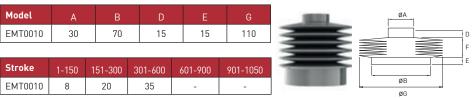
13

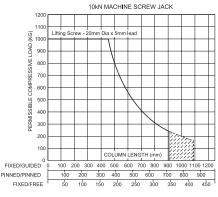
Upright EMR0010-V00


Inverted EMR0010-J00

10

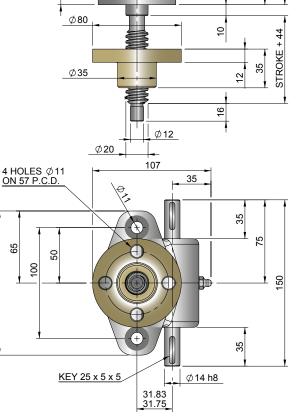
65


130


100

Closed Height & Bellows Boots

Closed Height "C"	Threaded End		Top Plate		Clevis End		Fork End		Rod End	
	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0010	125	45	125	45	145	65	148	98	150	70
Stroke (mm)	EMT0010 with Bellows Boots									
0-150	125	75	125	75	145	95	148	98	165	115
151-300	130	95	130	95	150	115	153	118	170	135
301-600	140	95	140	95	160	115	163	118	180	135
751-1000	-	-	-	-	-	-	-	-	-	-


Note

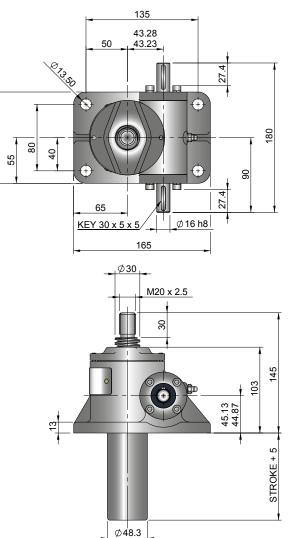
2

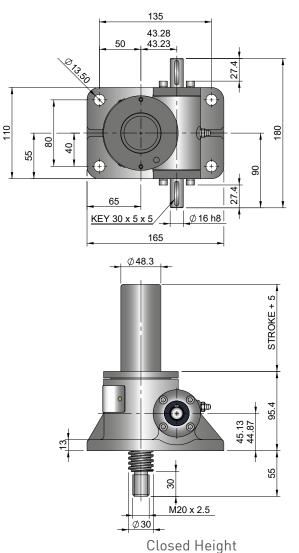
Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3

 For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

Column Strength

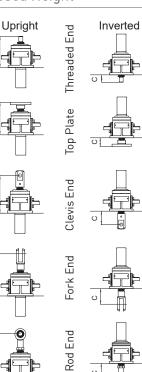



25kN Translating

Upright EMT0025-V00

110

Inverted EMT0025-J00



C

Performance

Model					0025	
Capacity (KNI)					EMR0025 25	
	Capacity (kN)				<u> </u>	
Sustaining	Standard 316		ension	16.5		
Capacity	Lifting Screw	C	Compression	2	5	
(kN)	Duplex Lifting S	Duplex Lifting Screw				
	Standard 316 W	or	m Shaft	8.	25	
Operating	Duplex or Plated Worm Shaft with 316 Screw		Tension	16	5.5	
Capacity (kN)			Compression	59		
((()))	Duplex or Plated Worm Shaft with Duplex Screw			25		
	Diameter (mm)			30		
Lifting Screw	Lead -		Option	1	2	
Sciew			mm	6	12	
	Gear Ratio	6:1				
Gear Ratio Option 1	Screw Jack Stat	0.201	0.302			
	Screw Jack Dyn	0.264	0.383			
	Gear Ratio			24:1		
Gear Ratio Option 2	Screw Jack Stat	0.115	0.171			
	Screw Jack Dyn	0.167	0.242			

Model	EMT0025 EMR0025			
Capacity	kN	25		
Lifting Screw	Lead (mm)		6	12
Turn of worm for	Gear Ratio 1	1 Turn	1mm	2mm
travel of lifting screw	Gear Ratio 2	1mm	2mm	
Maximum Through Torque (Nm)		59		
Lifting Screw Restraining Torque (Nm)		76	102	
Worm Shaft Maximum Radial Load (N)		380		
Maximum Inp	1800			
Gear Case Ma	Stainless Steel			
Waisht (ka)	EMT	8.45		
Weight (kg) - s		EMR	8.85	
M(1 + (1 -)	EMT	0.21		
Weight (kg) - p	EMR	0.11		

O

ลิ

π

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

25kN Rotating

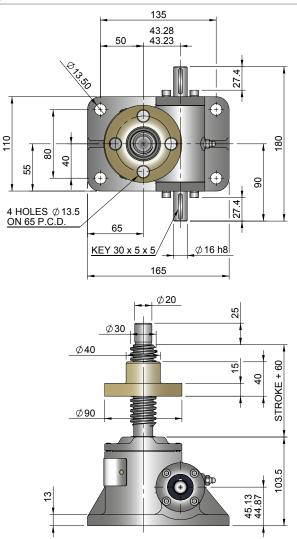
95.5

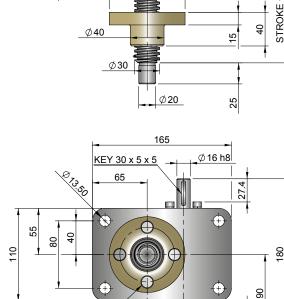
09

87

45.4

Upright EMR0025-V00


Inverted EMR0025-J00

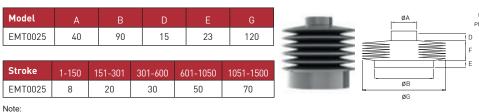

33

4

4 HOLES Ø13.5 ON 65 P.C.D.

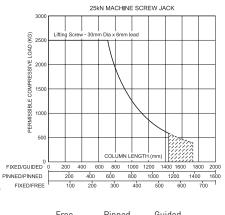
Ø**90**

43.28 43.23

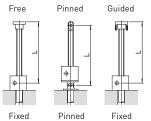

135

Column Strength

50


Closed Height & Bellows Boots

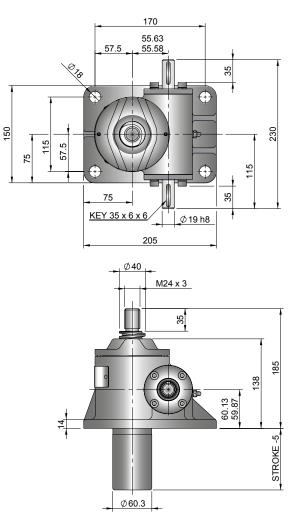
Closed	Threaded End		Top Plate		Clevis End		Fork End		Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EMT0025	145	55	145	55	170	80	194	104	190	100
Stroke (mm)	EMT0025 with Bellows Boots									
1-300	145	80	145	80	170	105	194	129	205	140
301-600	145	105	145	105	170	130	194	154	205	165
601-1050	170	130	170	130	195	155	219	179	230	190
1051-1500	195	130	195	130	220	155	244	179	255	190



- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 2
 - 3
 - 4
 - For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 5

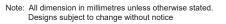
Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

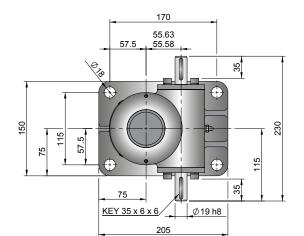
27.4



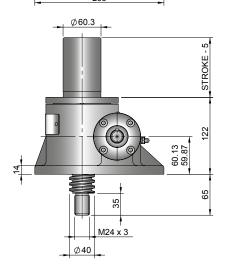
72 50kN Translating

Upright EMT0050-V00

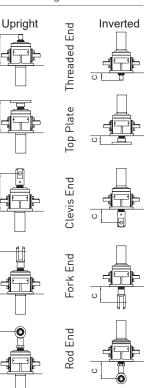

Inverted EMT0050-J00



Performance


Model					EMT0050 EMR0050		
Capacity (kN)				5	0		
Sustaining	Standard 316		ension	33			
Capacity	Lifting Screw	C	Compression	33			
(kN)	Duplex Lifting S	5	0				
	Standard 316 W	or	m Shaft	16	.5		
Operating	Duplex or Plated Worm Shaft with 316 Screw		Tension	33			
Capacity (kN)			Compression	50			
	Duplex or Plate Shaft with Dupl	50					
1.16.1	Diameter (mm)			40			
Lifting Screw	Lead -		Option	1	2		
Sciew			mm	9	18		
0 D.V.	Gear Ratio	6:1					
Gear Ratio Option 1	Screw Jack Stat	0.213	0.314				
	Screw Jack Dyn	0.281	0.398				
	Gear Ratio	24:1					
Gear Ratio Option 2	Screw Jack Stat	0.117	0.172				
	Screw Jack Dyn	0.172	0.244				

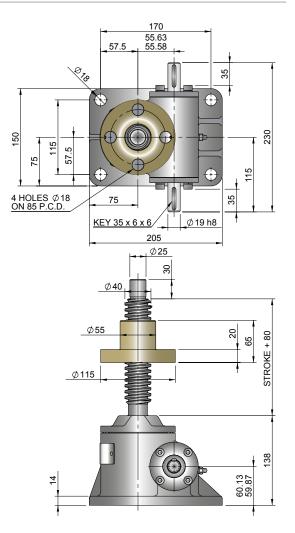
Model	EMT0050 EMR0050			
Capacity	kN	50		
Lifting Screw	fting Screw Lead (mm)			
Turn of worm for	Gear Ratio 1	1 Turn	1.5mm	3mm
travel of lifting screw	Gear Ratio 2	1.5mm	3mm	
Maximum Thr	168			
Lifting Screw	Restraining Torq	ue (Nm)	210	290
Worm Shaft Maximum Radial Load (N)		740		
Maximum Inp	ut Speed (rpm)		180	00
Gear Case Ma	Stainless Steel			
M/- 1- 1- 1 (1)	EMT	14.9		
Weight (kg) - s	EMR	16.54		
M	EMT	0.32		
Weight (kg) - p	stroke	EMR	0.19	



JACKS

Closed Height

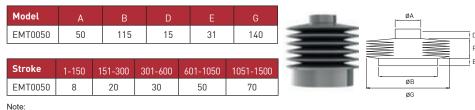
C



50kN Rotating

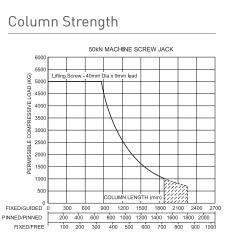
Upright EMR0050-V00

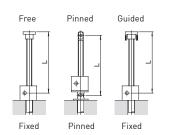
Inverted EMR0050-J00



122 .13 7 59. 18 Ø115 80 STROKE + 65 Ø**5**5 20 8 Ø40 Ø**25** 205 KEY 35 x 6 x 6 Ø19 h8 4 HOLES Ø18 ON 85 P.C.D. 75 35 \oplus \oplus 230 150 115 57.5 75 115 Œ Ø18 35 55.63 55.58 57.5

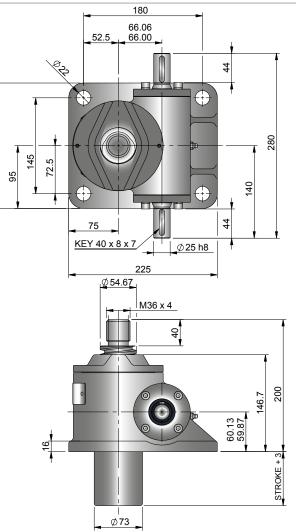
170


Closed Height & Bellows Boots


Closed	Thread	Threaded End Top		Plate Clevi		s End Fork		End	Rod End		
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	
EMT0050	185	65	185	65	210	90	248	128	242	122	
Stroke (mm)		EMT0050 with Bellows Boots									
1-150	185	110	185	110	210	135	248	173	257	182	
151-300	185	120	185	120	210	145	248	183	257	192	
301-600	210	130	210	130	235	155	273	193	282	202	
601-1050	210	150	210	150	235	175	273	213	282	222	
1051-1500	235	170	235	170	260	195	298	233	307	242	

- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 2 3
- 4
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 5

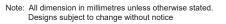
Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

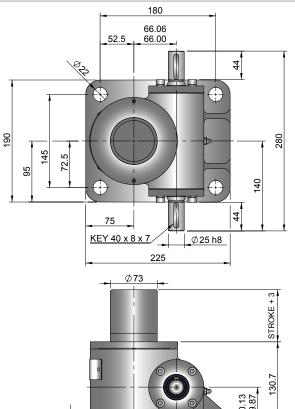


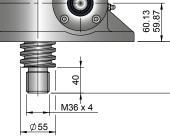
Upright EMT0100-V00

190

Inverted EMT0100-J00

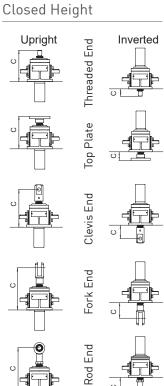

16





Model					0100 0100	
Capacity (kN	1)			100		
Sustaining	Standard 316	Т	ension	6	6	
Capacity	Lifting Screw	0	Compression	10	00	
(kN)	Duplex Lifting S	10	00			
	Standard 316 W	or	m Shaft	3	3	
Operating Capacity (kN)	Duplex or Plated Worm Shaft with 316 Screw		Tension	66		
			Compression	100		
	Duplex or Plate Shaft with Dupl	100				
	Diameter (mm)			55		
Lifting Screw	Lead		Option	1	2	
Sciew	Lead		mm	12	24	
	Gear Ratio			8	:1	
Gear Ratio Option 1	Screw Jack Stat	tic	Efficiency	0.206	0.305	
	Screw Jack Dyn	ar	nic Efficiency	0.272	0.388	
	Gear Ratio	24:1				
Gear Ratio Option 2	Screw Jack Stat	tic	Efficiency	0.132	0.195	
	Screw Jack Dyn	ar	nic Efficiency	0.190	0.271	

Model			EMT(EMR(
Capacity	kN		10	0	
Lifting Screw	Lead (mm)		12	24	
Turn of worm for travel of	Gear Ratio 1	1 Turn	1.5mm	3mm	
travel of lifting screw	Gear Ratio 2	4 Turn	2mm	4mm	
Maximum Thr	Maximum Through Torque (Nm)				
Lifting Screw	Restraining Toro	jue (Nm)	575	780	
Worm Shaft M (N)	aximum Radial	Load	100)0	
Maximum Inp	ut Speed (rpm)		1800		
Gear Case Ma	terial		Stainless Steel		
	150		EMT	24.3	
vveignt (kg) - s	troke = 150mm		EMR	28.8	
M(: 1 · (1 -)			EMT	0.58	
weight (kg) - p	per extra 25mm	stroke	EMR	0.36	

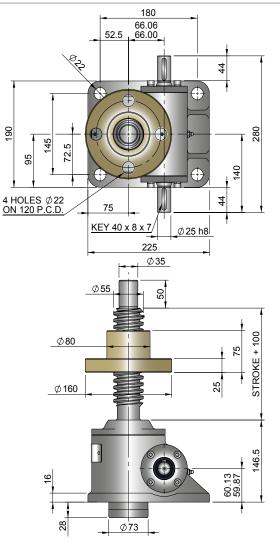


C

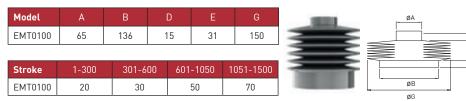
T

O

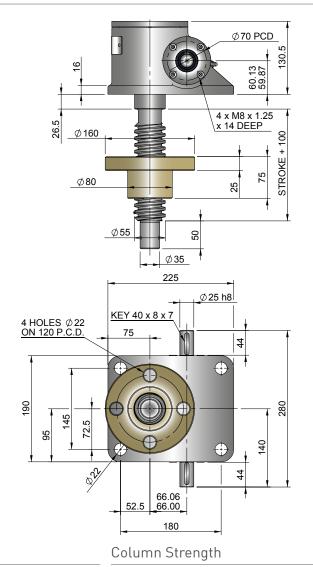
80

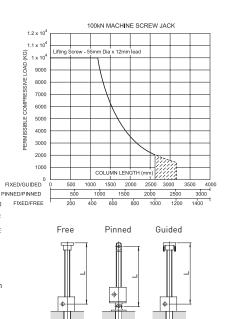


100kN Rotating


Upright EMR0100-V00

Inverted EMR0100-J00

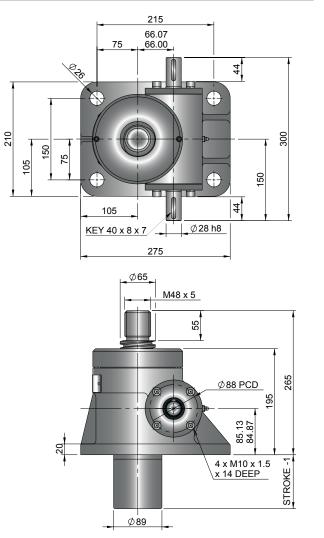


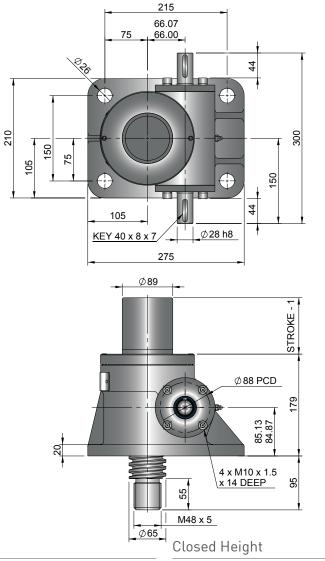

Closed			Top I	Top Plate		Clevis End		Fork End		Rod End		
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted		
EMT0100	200	80	200	80	245	125	302	182	283	163		
Stroke (mm)		EMT0100 with Bellows Boots										
1-300	200	105	200	105	245	150	302	207	298	203		
301-600	200	130	200	130	245	175	302	232	298	228		
601-1050	225	130	225	130	270	175	327	232	323	228		
1051-1500	250	155	250	155	295	200	352	257	348	253		

- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4
- 5
- Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

Pinned

Fixed

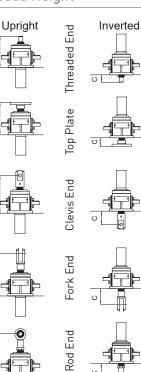

Fixed



200kN Translating

Upright EMT0200-V00

Inverted EMT0200-J00



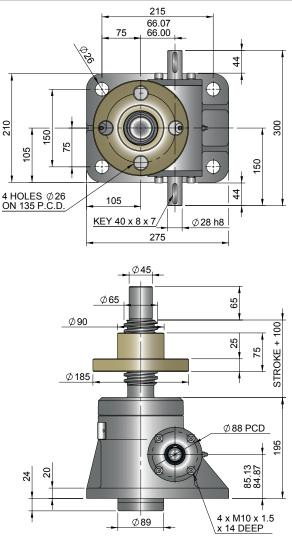
C

Performance

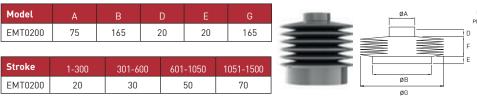
Model					0200 0200	
Capacity (kN	1)			200		
Sustaining	Standard 316	Т	ension	1:	32	
Capacity	Lifting Screw		Compression	20	00	
(kN)	Duplex Lifting S	20	00			
	Standard 316 W	or	m Shaft	6	6	
Operating Capacity (kN)	Duplex or Plated Worm Shaft with 316 Screw		Tension	132		
			Compression	20	00	
	Duplex or Plate Shaft with Dupl	200				
	Diamet	ter	· (mm)	65		
Lifting	Lead		Option	1	2	
Sciew	Lead		mm	12	24	
	Gear Ratio			8	:1	
Gear Ratio Option 1	Screw Jack Stat	tic	Efficiency	0.181	0.279	
	Screw Jack Dyn	ar	nic Efficiency	0.242	0.357	
	Gear Ratio	24:1				
Gear Ratio Option 2	Screw Jack Stat	tic	Efficiency	0.116	0.178	
	Screw Jack Dyn	ar	nic Efficiency	0.169	0.250	

Model			EMT(EMR(
Capacity	kN		20	0	
Lifting Screw	Lead (mm)		12	24	
Turn of worm for travel of lifting screw	Gear Ratio 1	1 Turn	1.5mm	3mm	
	Gear Ratio 2	4 Turn	2mm	4mm	
Maximum Thr	n)	396			
Lifting Screw	Restraining Torq	ue (Nm)	1300	1705	
Worm Shaft M (N)	aximum Radial	Load	1600		
Maximum Inp	ut Speed (rpm)		1800		
Gear Case Ma	terial		Stainles	s Steel	
M/- 1-1-1 (1)	150		EMT	42.4	
weight (kg) - s	stroke = 150mm		EMR	49.58	
\\/	0E -		EMT	0.84	
vveignt (kg) - p	per extra 25mm :	STLOKE	EMR	0.52	

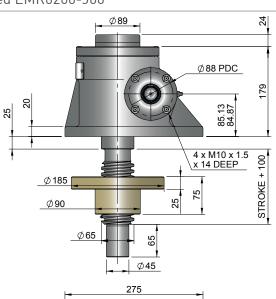
O

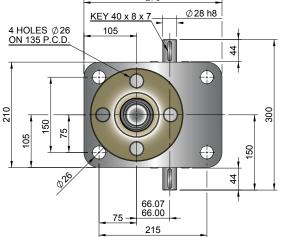

π

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice


Upright EMR0200-V00

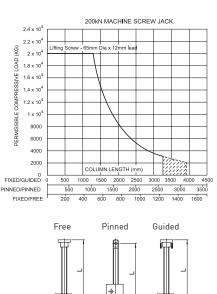
Inverted EMR0200-J00


Closed	Thread	ed End	Top I	Top Plate		Clevis End		End	Rod End		
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	
EMT0200	265	95	265	95	310	140	400	230	367	197	
Stroke (mm)	EMT0200 with Bellows Boots										
1-300	265	120	265	120	310	165	400	255	387	242	
301-600	265	145	265	145	310	190	400	280	387	267	
601-1050	290	145	290	145	335	190	425	280	412	267	
1051-1500	315	170	315	170	360	215	450	305	437	292	



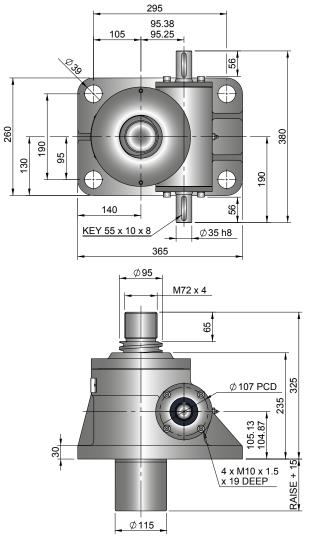
Note

- 2
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- + Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5


Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

Column Strength

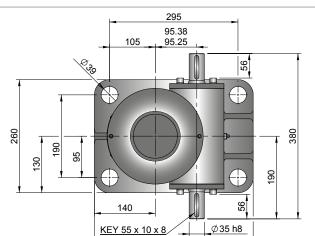
Fixed


Pinned

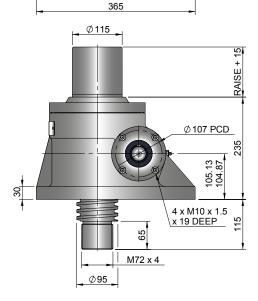
Fixed

300kN Translating

Upright EMT0300-V00


Inverted EMT0300-J00

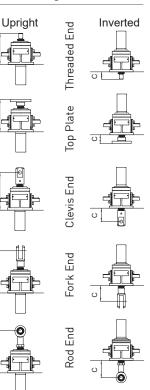
Performance


		_				
Model					0300 0300	
Capacity (kN	1)			300		
Sustaining	Standard 316	Т	ension	20	00	
Capacity	Lifting Screw		Compression	30	00	
(kN)	Duplex Lifting S	30	00			
	Standard 316 W	or	m Shaft	10	00	
Operating Capacity (kN)	Duplex or Plated Worm Shaft with 316 Screw		Tension	200		
			Compression	300		
	Duplex or Plate Shaft with Dupl	300				
	Diameter (mm)			95		
Lifting Screw	Lead		Option	1	2	
Sciew	Lead		mm	16	32	
	Gear Ratio			10 2	/3:1	
Gear Ratio Option 1	Screw Jack Stat	tic	Efficiency	0.149	0.232	
option	Screw Jack Dyn	Screw Jack Dynamic Efficiency				
	Gear Ratio	32:1				
Gear Ratio Option 2	Screw Jack Stat	tic	Efficiency	0.084	0.131	
	Screw Jack Dyn	an	nic Efficiency	0.128	0.192	

Model			EMT EMR			
Capacity	kN		30	00		
Lifting Screw	Lead (mm)		16	32		
Turn of worm for travel of lifting screw	Gear Ratio 1	1 Turn	1.5mm	3mm		
	Gear Ratio 2	4 Turn	2mm	4mm		
Maximum Thr	n)	1440				
Lifting Screw	Restraining Torq	ue (Nm)	2805	3610		
Worm Shaft M (N)	aximum Radial I	Load	2170			
Maximum Inp	ut Speed (rpm)		18	1800		
Gear Case Ma	terial		Stainles	ss Steel		
M : 1 . (L .)			EMT	92.4		
vveignt (kg) - s	stroke = 150mm		EMR 113.7			
				1.55		
vveignt (kg) - p	per extra 25mm :	STLOKE	EMR	1.13		

PO

WERJACKS

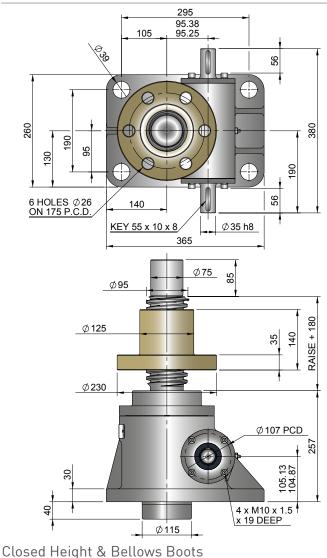

Closed Height

C

C

π

T


Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

POWERJACKS

300kN Rotating 79

Upright EMR0300-V00

Inverted EMR0300-J00

Top Plate

Inverted

115

140

165

165

190

20

601-1050

50

Upright

325

325

325

350

375

20

Clevis End

EMT0300 with Bellows Boots

Inverted

155

180

205

205

230

Upright

365

365

365

390

415

191

1051-1500

70

Fork End

on request

Inverted

_

Upright

_

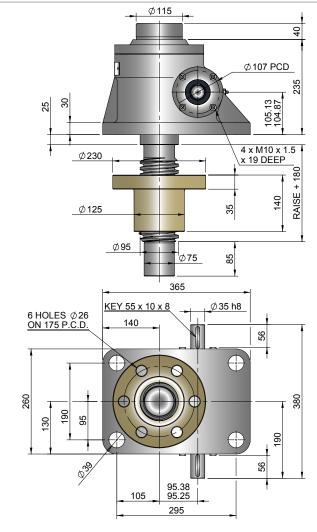
Rod End

on request

Inverted

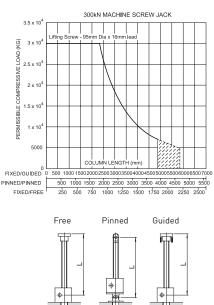
_

_


_

Upright

_


øв

ØG

Column Strength

Fixed

Note

Closed

Height "C"

EMT0300

Stroke (mm)

1-300

301-600

601-1050

1051-1500

Model

EMT0300

Stroke

EMT0300

Upright

325

325

325

350

375

110

1-300

20

Inverted

115

140

165

165

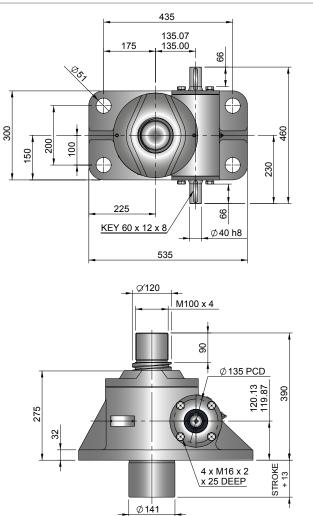
190

220

301-600

30

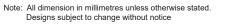
- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply
- 3
- 4
- + Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended.

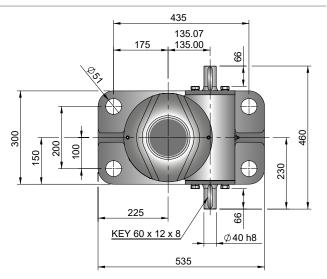

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

Fixed Pinned

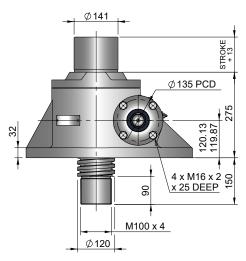
500kN Translating

Upright EMT0500-V00


Inverted EMT0500-J00

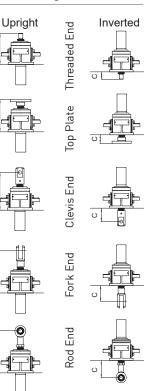


Performance


		_			
Model					0500 0500
Capacity (kN	1)			500	
Sustaining	Standard 316	Т	ension	33	33
Capacity	Lifting Screw		Compression	50	00
(kN)	Duplex Lifting S	50	00		
	Standard 316 W	or	m Shaft	10	57
Operating Capacity (kN)	Duplex or Plated Worm Shaft with 316 Screw		Tension	333	
			Compression	500	
	Duplex or Plated Worm Shaft with Duplex Screw			500	
	Diameter (mm)			120	
Lifting Screw	Lead		Option	1	2
Sciew	Lead		mm	16	32
	Gear Ratio			10 2	/3:1
Gear Ratio Option 1	Screw Jack Stat	tic	Efficiency	0.132	0.215
option	Screw Jack Dyn	0.181	0.284		
	Gear Ratio	32:1			
Gear Ratio Option 2	Screw Jack Stat	tic	Efficiency	0.079	0.129
	Screw Jack Dyn	an	nic Efficiency	0.120	0.188

Model			EMT	0500	
- iouct			EMR	0500	
Capacity	kN		50	00	
Lifting Screw	Lead (mm)		16	32	
Turn of worm for travel of lifting screw	Gear Ratio 1	1 Turn	1.5mm	3mm	
	Gear Ratio 2	4 Turn	2mm	4mm	
Maximum Thr	m)	2712			
Lifting Screw	Restraining Toro	jue (Nm)	5645	6975	
Worm Shaft M (N)	laximum Radial	Load	2190		
Maximum Inp	ut Speed (rpm)		1800		
Gear Case Ma	terial		Stainless Steel		
M · · · · · · · · · · · · · · · · · · ·			EMT	183.7	
Weight (kg) - s	Veight (kg) - stroke = 150mm				
M			EMT	2.48	
Weight [kg] - j	per extra 25mm	stroke	EMR	1.94	

POWERJACKS

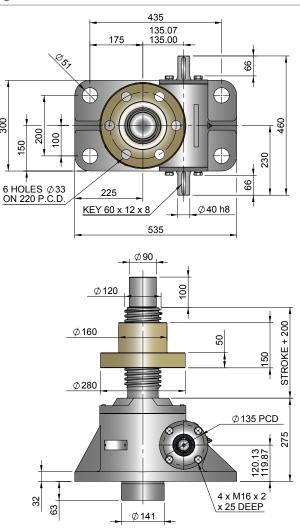


Closed Height

c.

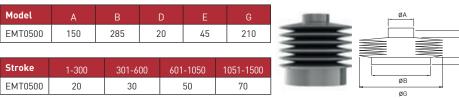
C

π


POWERJACKS

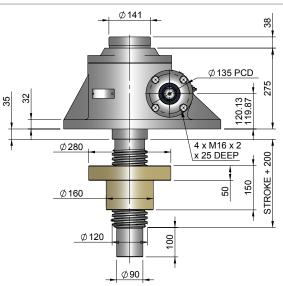
500kN Rotating

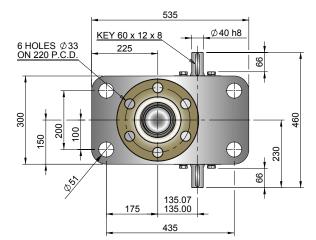
Upright EMR0500-V00

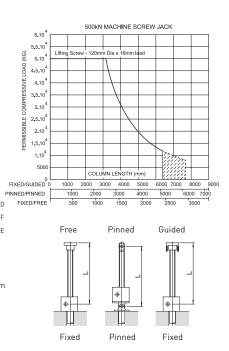

300

Inverted EMR0500-J00

Closed Height & Bellows Boots

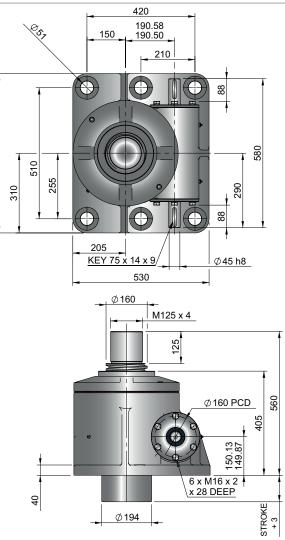

Closed	Threaded End		Top Plate		Clevis End		Fork End		Rod End		
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	
EMT0500	390	150	390	150	440	200	on request		on request		
Stroke (mm)		EMT0500 with Bellows Boots									
1-300	390	175	390	175	440	225	-	-	-	-	
301-600	415	200	415	200	465	250	-	-	-	-	
601-1050	440	225	440	225	490	275	-	-	-	-	
1051-1500	465	250	465	250	515	300	-	-	-	-	




- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
- + Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4
- 5

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

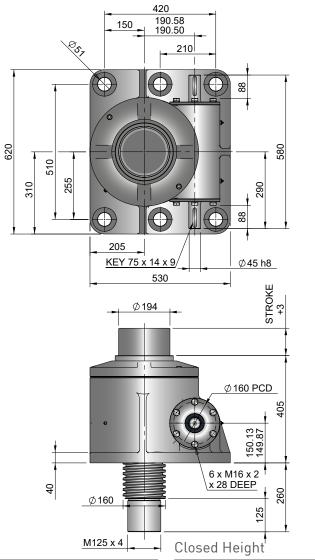
Column Strength



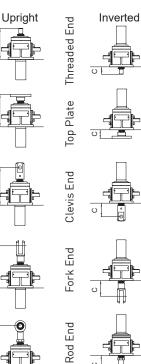
1000kN Translating

Upright EMT1000-V00

620


Inverted EMT1000-J00

Performance


Model				EMT1000 EMR1000	
Capacity (kN	1)			1000	
Sustaining	Standard 316	Т	ension	666	
Capacity	Lifting Screw	C	Compression	1000	
(kN)	Duplex Lifting S	1000			
	Standard 316 W	or	m Shaft	333	
Operating	Duplex or Plated Worm Shaft with		Tension	666	
Capacity (kN)	316 Screw		Compression	1000	
	Duplex or Plate Shaft with Dupl	1000			
1.00	Diamet	ter	(mm)	160	
Lifting Screw	l ead		Option	1	
Jerew	Lead		mm	20	
	Gear Ratio			12:1	
Gear Ratio Option 1	Screw Jack Stat	tic	Efficiency	0.131	
	Screw Jack Dyn	an	nic Efficiency	0.178	
a Dui	Gear Ratio			36:1	
Gear Ratio	Screw Jack Stat	Efficiency	0.079		
	Option 2 Screw Jack Dynamic Efficiency				

Model			EMT EMR		
Capacity	kN		10	00	
Lifting Screw	Lead (mm)		20		
Turn of worm for	Gear Ratio 1	1 Turn	1.67	mm	
travel of lifting screw	Gear Ratio 2	4 Turn	6.67	mm	
Maximum Thr	ough Torque (Nr	n)	6075		
Lifting Screw	Restraining Torc	ue (Nm)	14890		
Worm Shaft M (N)	laximum Radial	Load	22	20	
Maximum Inp	ut Speed (rpm)		18	00	
Gear Case Ma	terial		Stainles	ss Steel	
M : 1 . (L .)			EMT	459.1	
Weight (kg) - s	stroke = 150mm		EMR	560.4	
M · · · · (I -)			EMT	4.11	
vveight (kg) - p	per extra 25mm	STroke	EMR	3.38	

C

C

O

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

POWERJACKS

420 190.58 190.50

 \oplus

 \bigcirc

530

Ø194

210

 \oplus 88

150

 \bigcirc

205

1000kN Rotating 83

580

53

405

STROKE + 250

175

60

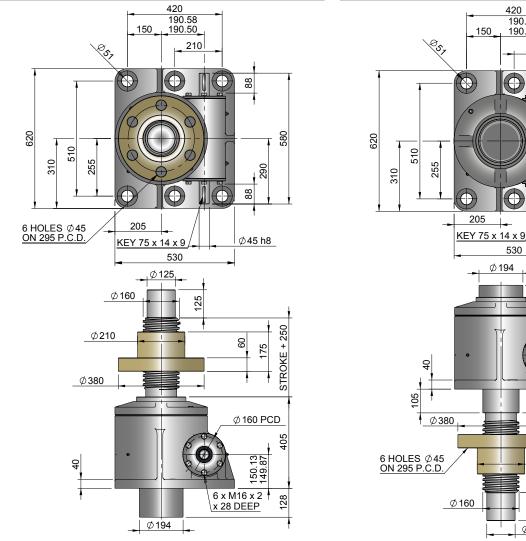
290

88

 ϕ 45 h8

Ø160 PCD

150.13 149.87


6 x M16 x 2 x 28 DEEP

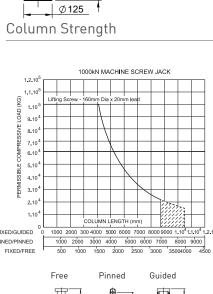
Ø**210**

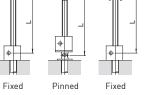
125

Upright EMR1000-V00

Inverted EMR1000-J00

Closed	Threaded End		Top Plate		Clevi	s End	Fork	End	Rod End		
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	
EMT1000	560	260	560	260	625	325	on request		on request		
Stroke (mm)		EMT1000 with Bellows Boots									
1-300	560	260	560	260	625	325	-	-	-	-	
301-600	560	260	560	260	625	325	-	-	-	-	
601-1050	585	285	585	285	650	350	-	-	-	-	
1051-1500	610	310	610	310	675	375	-	-	-	-	

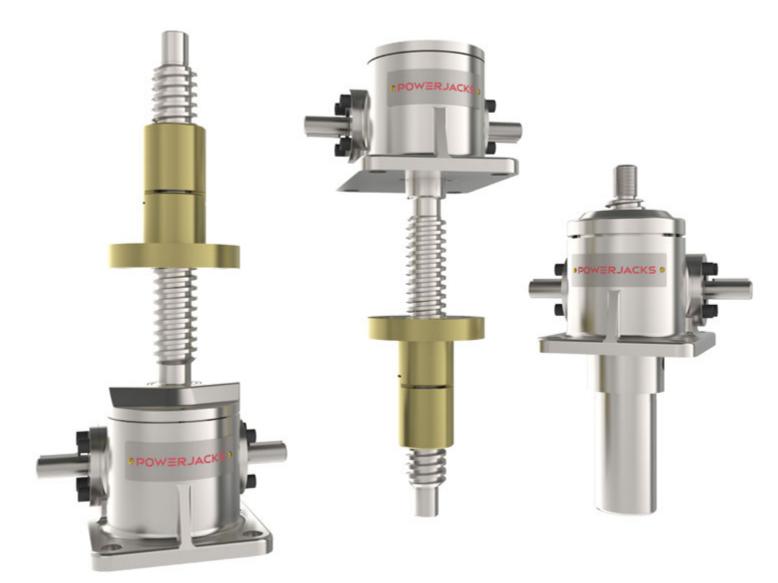



Note

Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3

+ Control tapes fitted (increase outer diameter by 20mm approximately). For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4 5

Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7



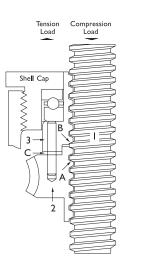
3

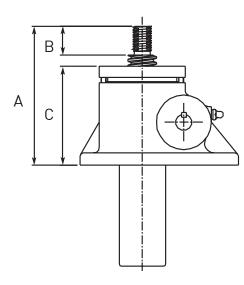
E-Series Stainless Steel Screw Jacks

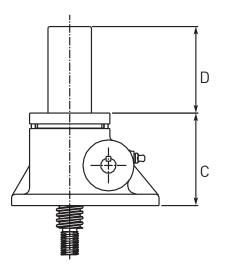
PERFORMANCE ENHANCED VARIANTS TO SOLVE SPECIFIC APPLICATION REQUIREMENTS

Minimise Axial Backlash for Reversing Loads

The Anti-Backlash feature provides a reliable method to regulate the axial backlash in a screw jack for applications where there is a reversal of loading from tension to compression. The amount of backlash between the screw and worm gear nut can be adjusted (adjust shell cap) to a desired amount or a practical minimum. To avoid binding and excessive wear do not adjust backlash to less than 0.025mm.


The Anti-Backlash feature also acts as a safety device, providing dual nut load carrying unit, when the worm gear becomes worn.


A visual wear indicator is available on request for all models and a "feeler" gauge can be used to measure the wear. This can be upgraded to use a sensor for wear monitoring. Consult Power Jacks for either option.


Dimensions

Upright

How it works -

refer p193

The dimensions for these screw jacks are the same as the standard units except those detailed below.

Model	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000
A	125	145	185	200	265	340	415	585
В	24	30	35	40	55	65	90	125
С	86	103.5	138	146.5	195	250	295	415
D	Stroke + 35	Stroke + 30	Stroke - 5	Stroke + 3	Stroke + 24	Stroke +38	Stroke + 28	Stroke + 3

Anti-Backlash 87

E-Series - Stainless Steel Screw Jacks - Anti-Backlash - Performance

		Model			10-V0A 10-J0A		25-V0A 25-J0A		50-V0A 50-J0A		00-V0A 00-J0A
Сара	acity		kN	1	0	2	5	5	i0	11	00
Susta	aining		Tension	6	.6	10	5.5	3	3	6	6
Capaci	ty (kN)	С	ompression	1	0	2	:5	5	iO	11	00
		Stainless	s Steel Worm Shaft	3.3		8.	25	16.5		3	3
Opera	5	Plated	Tension	6	.6	10	5.5	3	3	6	6
Capaci	ty (kN)	Worm Shaft	Compression	10		2	:5	5	i0	11	00
			mm	2	20	3	0	4	0	5	5
Lifting	Screw ¹	Lead	Option	1	2	1	2	1	2	1	2
		Leau	mm	5	10	6	12	9	18	12	24
Gear F	Datian		Option 1	5	:1	6	:1	6	:1	8	:1
Gearr	Ratios		Option 2	20):1	24	i:1	24	4:1	24	i:1
Max.	Input	Gea	r Ratio Option 1	0.3	375	1	.5	3	.0	3.	75
Power	r (kW)	Gea	r Ratio Option 2	0.	19	0.3	375	0.	55	1.1	25
Start up		Gea	r Ratio Option 1	7.8	10.9	23.5	31.3	62.3	84.9	129.2	147.8
at f load (Gea	r Ratio Option 2	3.6	5.1	9.8	13.0	28.5	38.8	66.8	90.4
Weight (I	kg) - stro	ke = 150mi	m	2.	72	8.	62	16	.78	26	.12
Weight (I	kg) per e	xtra 25mm		0.	13	0.	21	0.	32	0.	57
Gear		Gea	r Ratio	5	:1	6	:1	6	:1	8	:1
Ratio Option	So	rew Jack S	Static Efficiency	0.203	0.291	0.169	0.254	0.192	0.281	0.185	0.273
1	Scr	ew Jack Dy	namic Efficiency	0.263	0.365	0.222	0.322	0.251	0.356	0.243	0.325
Gear	1	Gea	r Ratio	20):1	24	i:1	24	4:1	24	i:1
Ratio	So	rew Jack S	Static Efficiency	0.109	0.157	0.102	0.153	0.105	0.154	0.119	0.176
Option 2	Scr	ew Jack Dy	mamic Efficiency	0.159	0.220	0.150	0.217	0.154	0.218	0.172	0.245

		Model	l			00-V0A 00-J0A		00-V0A 00-J0A		00-V0A 00-J0A	EMT1000-V0A EMT1000-J0A
Capa	acity		ŀ	<n .<="" td=""><td>21</td><td>00</td><td>3</td><td>00</td><td>50</td><td>00</td><td>1000</td></n>	21	00	3	00	50	00	1000
Susta	ining		Ter	ision	1:	32	2	00	33	33	666
Capacit	ty (kN)	(Comp	ression	21	00	3	00	50	00	1000
		Stainles	s Ste	el Worm Shaft	3	.3	1	00	10	67	333
Opera Capacit	5	Plate	d	Tension	6	.6	2	00	33	33	666
		Worm S	haft	Compression	1	0	300		50	00	1000
			n	۱m	6	5	9	5	1:	20	160
Lifting	Screw ¹	Lead		Option	1	2	1	2	1 2		1
		Lead		mm	12	24	16	32	16 32		20
			Opt	ion 1	8	:1	10 2	2/3:1	10 2/3:1		12:1
Gear F	Ratios		Opt	ion 2	24	i:1	32	2:1	32	2:1	36:1
Max. I	Input	Gea	ar Rat	io Option 1	3.	75	6	.0	11	.25	18.5
Power	r (kW)	Gea	ar Rat	io Option 2	1.1	25	1	.9	4	.5	8.25
Start up at f		Gea	ar Rat	io Option 1	281.2	368.5	534	687	1000	1236	2243
load (Gea	ar Rat	io Option 2	153.7	201.4	315	405	568	702	1244
Weight (I	kg) - stro	ke = 150m	mm		4	.9	9	1	20)9	610
Weight (I	kg) per ex	xtra 25mm	1		0.86		1.	58	2.	49	4.31
Gear		Gea	ar Rat	io	8	:1	10 2	2/3:1	10 2	2/3:1	12:1
Ratio Option	S	crew Jack	Static	Efficiency	0.170	0.259	0.134	0.209	0.119	0.193	0.118
1	Scr	ew Jack D	ynam	ic Efficiency	0.226	0.332	0.184	0.277	0.163	0.256	0.160
Gear		Gea	ar Rat	io	24	i:1	32	2:1	32	2:1	36:1
Ratio	S	crew Jack	Static	Efficiency	0.104	0.158	0.076	0.118	0.070	0.113	0.071
Option 2	Scr	ew Jack D	ynam	ic Efficiency	0.151	0.222	0.115	0.173	0.105	0.165	0.106

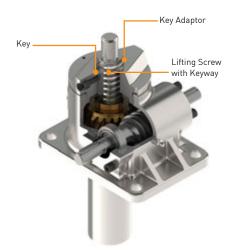
Note

1. All metric machine screws have a trapezoidal thread form.

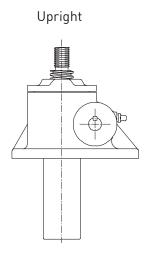
2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

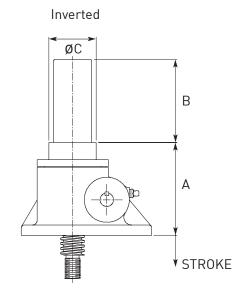
3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.


POWERJACKS

Linear Movement for Rotationally Unconstrained Loads


The Anti-Rotation feature for translating screw jacks stops the lifting screw from rotating without the need for end fixing. This is done by keying the lifting screw.


Benefits:

- Compact unit integrates anti-rotation into gearbox
- Dimensions are the same as the standard translating screw jack
- Standard round cover pipe for easy installation
- Proven industrial anti-rotation design

Dimensions

Dimensions for Upright Models with Anti-Rotation (Keyed)

The Dimensions for upright E-Series machine screw jacks with anti-rotation (keyed) mechanism are the same as the standard screw jacks without the feature.

Dimensions for Inverted Models with Anti-Rotation (Keyed)

The dimensions for these screw jacks are the same as the standard units except those detailed below.

Model	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000
А	78	125.5	159	167.5	210	267	307	445
В	Stroke + 35	Stroke + 30	Stroke + 20	Stroke + 3	Stroke -1	Stroke + 15	Stroke + 13	Stroke + 3
øC	N/A	60	75	90	102	141.5	180	236

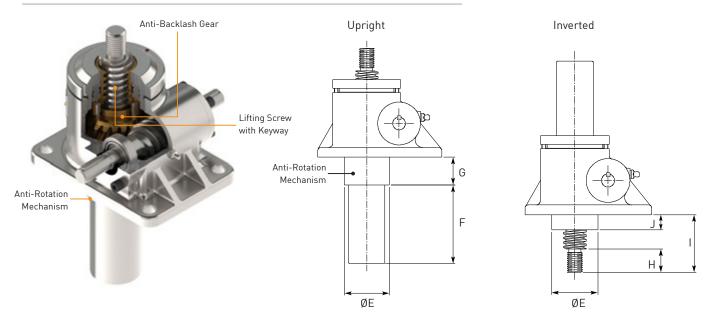
Anti-Rotation (Keyed) 89

	Mode	ŧL		10-VK0 10-JK0		25-VK0 25-JK0		50-VK0 50-JK0		00-VK0 00-JK0
Capacity		kN	1	0	2	25	50		1	00
Sustaining		Tension	6	.6	1	6.5	3	3	é	6
Capacity (kN	1)	Compression	1	0	2	25	5	0	1	00
	Stainle	ss Steel Worm Shaft	3	.3	8.	25	16	5.5	3	33
Operating Capacity (kN	I) Vorm	Tension	6	.6	1	6.5	3	3	6	6
oupdeity (iti	Shaft	Compression	1	0	2	25	5	0	1	00
		mm	2	20	3	30	4	.0	5	5
Lifting Screw	/ ¹ Lead	Option	1	2	1	2	1	2	1	2
	Leau	mm	5	10	6	12	9	18	12	24
Gear Ratios	Option 1		5:1		6:1		6:1		8	:1
		Option 2	20):1	24	4:1	24	4:1	24	4:1
Max. Input		ar Ratio Option 1	0.375		1	.5	3	.0	3.	75
Power (kW)	Ge	ar Ratio Option 2	0.	19	0.3	375	0.	55	1.1	125
Start up torqu at full	Je Ge	ar Ratio Option 1	7.1	9.9	20.8	27.7	58.7	80	121.7	164.7
load (Nm) ²	Ge	ar Ratio Option 2	3.1	4.4	9.2	12.2	26.8	36.6	63.6	86.1
Veight (kg) - s	stroke = 150r	nm	2.	27	8.	17	15	.88	24	.72
Veight (kg) pe	er extra 25mi	m	0.	13	0.	21	0.	32	0.	57
Gear	Ge	ar Ratio	5	:1	6	:1	6	:1	8	:1
Ratio Option	Screw Jack	Static Efficiency	0.224	0.322	0.191	0.287	0.203	0.299	0.196	0.290
	Screw Jack I	Dynamic Efficiency	0.291	0.403	0.251	0.364	0.267	0.378	0.258	0.368
Gear	Ge	ar Ratio	20):1	24	4:1	24	i:1	24	4:1
Ratio Option	Screw Jack	Static Efficiency	0.127	0.182	0.108	0.162	0.111	0.163	0.125	0.185
2	Screw Jack I	Dynamic Efficiency	0.184	0.255	0.159	0.230	0.164	0.232	0.180	0.257

E-Series - Stainless Steel Screw Jacks - Anti-Rotation (Keyed) - Performance

		Model			200-VK0 200-VK0		800-JK0 800-VK0		00-VK0	EMT1000-VK0 EMT1000-JK0
Capa	acity		kN	2	00	3	00	5	00	1000
Susta	ining		Tension	2	00	3	00	5	00	1000
Capacit	ty (kN)	C	ompression	1	32	2	00	3	33	666
		Stainles	s Steel Worm Shaft	200		300		5	00	1000
Opera		Plated	Tension	3.3		1	00	1	67	333
Capacit	ty [kN]	Worm Shaft	Compression	6	.6	200		3	33	666
			mm	1	0	3	00	5	00	1000
Lifting S	Screw ¹	11	Option	ć	55	, c	95	1	20	160
		Lead	mm	12	24	16	32	16	32	20
Gear F	2-1		Option 1	8	:1	10 2	2/3:1	10 2/3:1		12:1
Gear	tios		Option 2	24	4:1	3	2:1	32	2:1	36:1
Max. I	Input	Gea	r Ratio Option 1	3.	75	6	.0	11	.25	18.5
Power	- (kW)	Gea	r Ratio Option 2	1.1	125	1	.9	4	.5	8.25
Start up at f		Gea	r Ratio Option 1	275.3	360.7	506	651	947	1170	2125
load (I		Gea	r Ratio Option 2	144	188.7	298	384	526	650	1126
Weight (I	kg) - stro	ke = 150m	m	L	45	8	36	1	95	553
Weight (I	kg) per e	xtra 25mm		0.	86	1.	.58	2.	49	4.31
Gear		Gea	r Ratio	8	:1	10 :	2/3:1	10 2	2/3:1	12:1
Ratio Option	So	rew Jack	Static Efficiency	0.173	0.265	0.142	0.220	0.126	0.204	0.125
1	Scr	ew Jack D	namic Efficiency	0.230	0.34	0.195	0.292	0.172	0.270	0.169
Gear		Gea	r Ratio	24	4:1	3	2:1	32	2:1	36:1
Ratio Option	So	rew Jack	Static Efficiency	0.111	0.169	0.080	0.124	0.076	0.122	0.079
2	Scr	ew Jack D	namic Efficiency	0.161	0.237	0.121	0.182	0.144	0.178	0.117

Note


1. All metric machine screws have a trapezoidal thread form.

2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.

Combine Anti-Backlash & Anti-Rotation in One Screw Jack

Dimensions for E-Series Stainless Steel Screw Jacks with Anti-Backlash & Anti-Rotation

Model	EMT0010-VKA EMT0010-JKA	EMT0025-VKA EMT0025-JKA	EMT0050-VKA EMT0050-JKA	EMT0100-VKA EMT0100-JKA	EMT0200-VKA EMT0200-JKA	EMT0300-VKA EMT0300-JKA	EMT0500-VKA EMT0500-JKA	EMT1000-VKA EMT1000-JKA
ØE	38	60	75	90	102	138	206	264
F	Stroke + 9	Stroke + 30	Stroke + 20	Stroke + 3	Stroke + 24	Stroke + 15	Stroke + 13	Stroke + 28
G	30	37	40	37	58	73	58	180
Н	24	30	35	30	55	65	55	125
1	45	55	65	55	110	115	110	405
J	16	19.5	24	19.5	39	43	39	145

E-Series - Stainless Steel Screw Jacks - Anti-Backlash & Anti-Rotation (Keyed) - Performance

		Model			10-VKA 10-JKA		25-VKA 25-JKA		50-VKA 50-JKA		00-VKA 00-JKA
Capa	acity		kN	1	0	2	25	5	0	1	00
Susta	ining		Tension	6	.6	10	6.5	3	3	6	6
Capacit	ty (kN)	(Compression	1	0	2	25	5	0	1	00
		Stainles	s Steel Worm Shaft	3	.3	8.	25	16	5.5	3	33
Opera		Plated		6	6.6		6.5	3	3	é	6
Capacit	ty (KNJ	Worm Shaft	Compression	1	0	2	25	5	0	1	00
			mm	2	20	3	30	4	.0	5	5
Lifting S	Screw ¹	Lead	Option	1	2	1	2	1	2	1	2
		Lead	mm	5	10	6	12	9	18	12	24
Gear F	2-1:		Option 1	5:1		6:1		6:1		8	:1
Gear H	tatios		Option 2	20:1		24	24:1		24:1		4:1
Max. I		Gea	r Ratio Option 1	0.3	375	1	.5	3	.0	3.	75
Power	~ (kW)	Gea	r Ratio Option 2	0.	0.19		375	0.	55	1.1	125
Start up		Gea	r Ratio Option 1	8.3	11.5	24.8	33	65.6	89.3	136	184
at f load (I		Gea	r Ratio Option 2	3.8	5.3	10.3	13.7	30	40.9	70.3	958.2
Weight (I	kg) - stro	ke = 150m	m	2.	72	8.	62	16	.78	26	.12
Weight (I	kg) per e	xtra 25mm		0.	13	0.	21	0.	32	0.	57
Gear		Gea	ır Ratio	5	:1	6	:1	6	:1	8	:1
Ratio Option	S	crew Jack	Static Efficiency	0.193	0.277	0.161	0.241	0.182	0.267	0.176	0.259
1	Scr	ew Jack D	ynamic Efficiency	0.250	0.346	0.211	0.306	0.239	0.338	0.231	0.330
Gear		Gea	ır Ratio	21):1	24	4:1	24	:1	24	4:1
Ratio Option	S	crew Jack	Static Efficiency	0.104	0.149	0.097	0.145	0.100	0.146	0.113	0.167
2	Scr	ew Jack D	ynamic Efficiency	0.151	0.209	0.142	0.206	0.146	0.208	0.163	0.233

		Model			00-VKA 00-JKA		00-VKA 00-JKA		00-VKA 00-JKA	EMT1000-VKA EMT1000-JKA
Capa	acity		kN	2	00	30	00	5	00	1000
Susta	ining		Tension	1	32	20	00	3	33	666
Capacit	ty (kN)	С	ompression	2	00	30	00	5	00	1000
0		Stain	ess Steel Worm Shaft	66		10	00	1	67	333
Opera Capacit		Plated	I Tension	1	32	20	00	3	33	666
oupuen	() (((()))	Worm Shaft		2	00	30	00	5	00	333
			mm	é	5	9	25	120		160
Lifting S	Screw ¹	Lead	Option	1	2	1	2	1	2	1
		Lead	mm	12	24	16	32	16	32	20
0	2-1		Option 1	8	:1	10 2	2/3:1	10 2	2/3:1	12:1
Gear F	Ratios		Option 2	24:1		32	2:1	32	2:1	36:1
Max. I	Input	Gea	r Ratio Option 1	3.75		6	.0	11	.25	18.5
Power	r (kW)	Gea	r Ratio Option 2	1.125		1	1.9		.5	8.25
Start up		Gea	r Ratio Option 1	296	387.9	562	723	1052	1301	2361
at f load (I		Gea	r Ratio Option 2	161.8	387.9	331	426	598	739	1309
Weight (I	kg) - stro	ke = 150m	m		9	9	21	2	D9	610
Weight (I	kg) per e	xtra 25mm	1	0.	86	1.	58	2.	49	4.31
Gear	1	Gea	r Ratio	8	:1	10 2	2/3:1	10 2	2/3:1	12:1
Ratio Option	Sc	rew Jack S	Static Efficiency	0.161	0.246	0.128	0.198	0.113	0.184	0.112
1	Scre	w Jack Dy	namic Efficiency	0.214	0.316	0.175	0.263	0.155	0.243	0.152
Gear	1	Gea	r Ratio	24	4:1	32	2:1	32	2:1	36:1
Ratio	Sc	rew Jack S	Static Efficiency	0.098	0.150	0.072	0.112	0.067	0.108	0.068
Option 2	Scre	w Jack Dy	namic Efficiency	0.143	0.211	0.109	0.164	0.100	0.157	0.100

Note

1. All metric machine screws have a trapezoidal thread form.

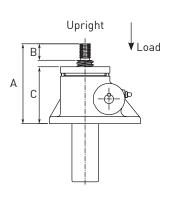
2. For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

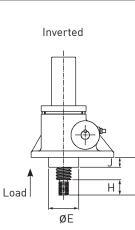
3. Efficiency values for standard grease lubricated worm gear box and lifting screw.

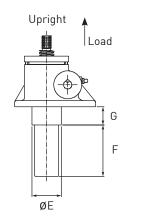
4. All E-Series screw jacks have grease lubricated gearbox and lead screw as standard.

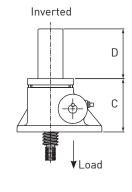
Extra Safety for Critical Applications

Power Jacks metric machine screw jacks can be fitted with a safety nut, which provides 2 safety roles:

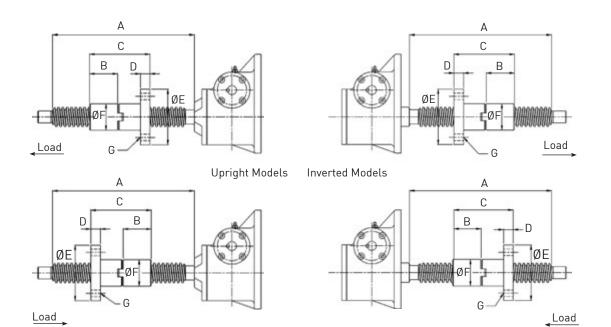

- In the event of excessive wear on the nut thread the load will be transferred from the standard nut to the safety nut. This will also provide visual wear indication as the gap between the safety nut decreases to zero as the standard lifting nut wears.
- 2. In the unlikely event of catastrophic nut thread failure the safety nut will sustain the load. The safety of industrial and human cargo is therefore improved.


There are several configurations for each safety nut device as they only work in one load direction. For this reason when ordering please supply a sketch of your application showing load directions.


Translating Screw Jacks with Safety Nuts


Compression Safety Nut

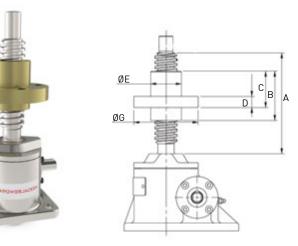
Tension Safety Nut



Dimensions - Translating Screw

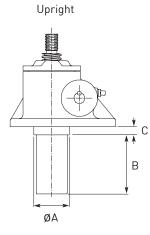
Model	Rating (kN)	А	В	С	D	ØE	F	G	Н	I	J
EMT0010	10	125	24	86	Stroke + 35	38	Stroke + 9	30	24	45	16
EMT0025	25	145	30	104	Stroke + 30	60	Stroke +30	37	30	55	20
EMT0050	50	185	35	138	Stroke - 5	75	Stroke + 20	40	35	65	24
EMT0100	100	200	40	146	Stroke +3	90	Stroke + 28	48	40	80	30
EMT0200	200	265	55	195	Stroke +24	102	Stroke + 24	58	55	110	39

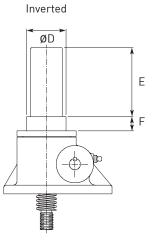
Safety Nut 93


Rotating Screw Jacks with Safety Nuts

Dimensions - Rotating Screw

Model	Rating (kN)	А	В	С	D	ØE	ØF	G
EMR0010	10	Stroke + 76	30	66.5	12	80	35	4 x Ø11, Ø57 PCD
EMR0025	25	Stroke + 95	33.5	75	15	90	40	4 x Ø13.5, Ø65 PCD
EMR0050	50	Stroke + 140	58	125	20	115	55	4 x Ø18, Ø85 PCD
EMR0100	100	Stroke + 170	67	145	25	160	80	4 x Ø22, Ø120 PCD
EMR0200	200	Stroke + 170	67	145	25	185	90	4 x Ø26, Ø135 PCD
EMR0300	300	Stroke + 310	126	270	35	230	125	6 x Ø26, Ø175 PCD
EMR0500	500	Stroke + 335	130	284	50	280	160	6 x Ø33, Ø220 PCD
EMR1000	1000	Stroke + 410	155	335	60	380	210	6 x Ø45, Ø295 PCD

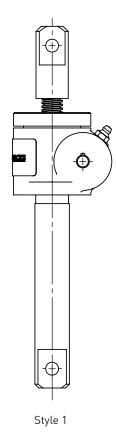

94 **Double Hub Nut for Rotating Screw Jacks**

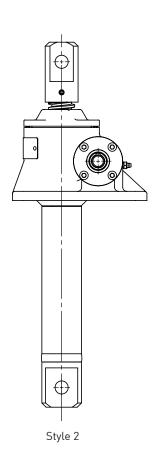


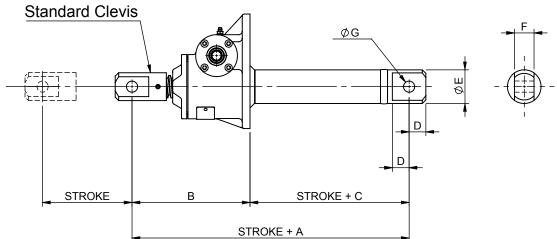
Model	А	В	С	D	ØE	F	ØG
EMR0010	Stroke + 61	52	35	12	35	4 x Ø11, Ø57 PCD	80
EMR0025	Stroke + 80	60	40	15	40	4 x Ø13.5, Ø65 PCD	90
EMR0050	Stroke + 100	85	65	20	55	4 x Ø18, Ø85 PCD	115
EMR0100	Stroke + 120	95	75	25	80	4 x Ø22, Ø120 PCD	160
EMR0200	Stroke + 120	95	75	25	90	4 x Ø26, Ø135 PCD	185
EMR0300	Stroke + 200	160	140	35	125	6 x Ø26, Ø175 PCD	230
EMR0500	Stroke + 225	175	150	50	160	6 x Ø33, Ø220 PCD	280
EMR1000	Stroke + 275	200	175	60	210	6 x Ø45, Ø295 PCD	380

Secondary Guide - Greater Lateral Rigidity for Lifting Screw

Secondary Guiding for the screw for greater lateral rigidity aiding screw guidance and improved side load resilience.




Dimensions for Screw Jacks with Secondary Guides


Model	l	EMT0010	EMT0025	ЕМТ0050	ЕМТ0100	EMT0200	ЕМТ0300	EMT0500	EMT1000
	ØA	38	60	70	90	100	138	155	225
Upright	В	Stroke + 34	Stroke + 30	Stroke + 20	Stroke + 29	Stroke + 24	Stroke + 40	Stroke + 38	Stroke + 50
	С	20	20	18	20	20	38	38	65
	ØD	N/A	60	70	90	100	138	155	
Inverted	E	Stroke + 34	Stroke + 30	Stroke + 20	Stroke + 29	Stroke + 24	Stroke + 40	Stroke + 38	On Request
	F	N/A	20	18	20	20	38	38	

Double Clevis Screw Jack 95

Model	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000
Capacity (kN)	10	25	50	100	200	300	500	1000
Style	1	2	2	2	2	2	2	
А	180	213	260	352	428	492	570	
В	145	170	210	247	313	367	440	
С	35	43	50	105	115	125	130	
D	20	23	30	33	40	60	75	On Request
E	33.4	48.3	60.3	73	102	133	168	
F	20	30	35	40	50	80	110	
ØG	12	16	20	22	30	45	60	
Max Stroke at Rated Load (Compression)	175	352	420	593	592	1338	1920	

Note: All dimensions in millimetres unless otherwise stated.

4

E-Series Ball Screw Jack

HIGH EFFICIENCY BALL SCREW JACK IN A COMPACT DESIGN WITH INTEGRATED SAFETY DEVICE.

Overall operating efficiency is as high as 70% in some models, depending on the worm gear ratio.

300kN

10kN

TRANSLATING SCREW JACKS

25kN

50kN

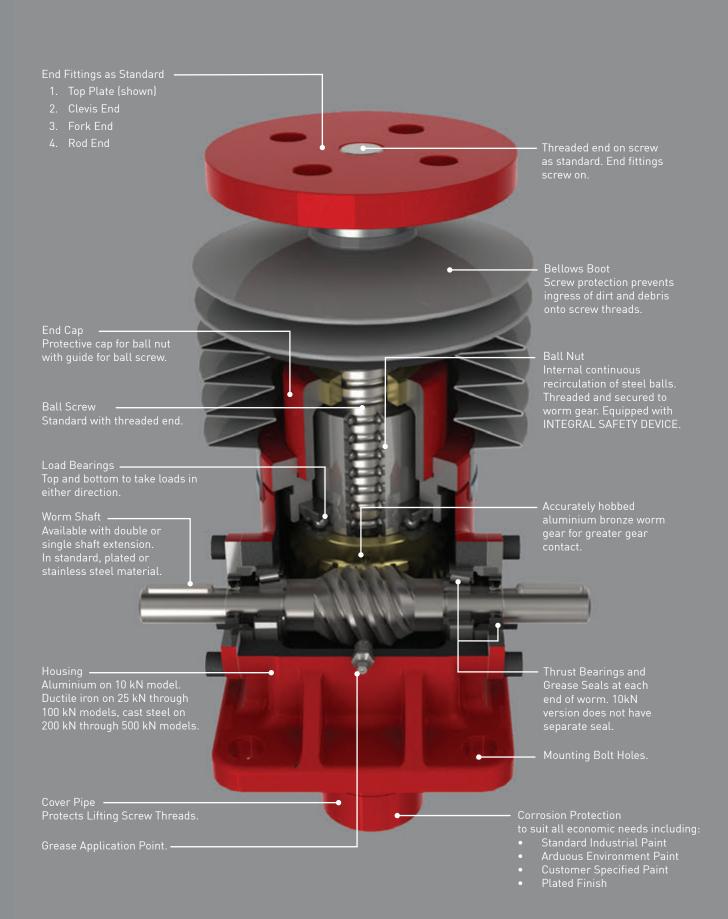
Features

I 10kN

- High Efficiency Power Jack
- Metric Single Face Ball Screw Jacks
- Capacities 10kN to 300 kN as standard
- Integral Safety Device for 25kN & above as standard
- Translating and Rotating Screw in Upright and Inverted types
- Precision Worm Gear Set and Ball Screw Drive
- 2 Gear ratios and 2 screw leads as standard
- Pre-loaded and Anti-rotation ball screw options
- 6 mounting options including trunnion and double clevis
- Special custom designs available

50kN

[100kN


25kN

200kN

200kN

100kN

300kN

POWERJACKS

Translating Screw

Upright

Inverted

Upright

Rotating Screw

Typical Applications

Ball Screw Jacks are generally used when the application has a relatively high duty cycle or the input power for a given screw jack is to be minimised. The high efficiency of the ball screw & nut significantly increase the efficiency of a screw jack in comparison to a Machine Screw Jack. Due to their high efficiency they nearly always require a brake to hold position. They are used in a wide variety of applications including Automotive, Steel, Glass, Defence, Nuclear and Solar industries.

Standard Designs

The standard E-Series ball screw jack is available in translating and rotating screw designs in capacity sizes from 10kN to 500kN. The design is optimised for performance and a compact form, which includes an added safety device as standard for most models. There is a large selection of options and accessories (section-7) that allows you to configure a standard design that is just right for your application. These options include Zero-Backlash and Anti-Rotation designs.

Special Designs

We can fully customise our screw jacks so that your application can be the best.

Customisation can be anything from a small modification such as an extra bolt hole on an end fitting to a completely new design of screw jack based on our class leading technology.

For more details please see the Special Screw Jack information in Section-8 or contact us today with your requirements. Our team are looking forward to working with you.

Selecting the Right Screw Jack

Consider all application constraints then choose a product that looks suitable for the intended application. Calculate the power and torque requirements. This is a 5 step process:

- Screw Jack Input Speed (RPM)
- Operating Input Power (kW)
- Operating Input Torque (Nm)
- Screw Jack Start-up Torque (Nm)
- Mechanical Power and Torque Check

Systems

The screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearbox, drive shafts, couplings, plummer blocks and motion control devices.

The use of bevel gearboxes allows the distribution of drive throughout a jacking system. The gearboxes come in 2,3 and 4 way drive types. See the Bevel Gearbox Section-10 for more details.

Bevel gearboxes and other system components can also be supplied in stainless steel or other corrosion resistant designs.

Two of the most popular system configurations are the 'H' and 'U' configured jacking systems. Remember that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.

If multiple ball screw jacks are connected in a mechanically linked system then the complete system in some designs may be considered self-locking. If you would like this checked consult Power Jacks. Alternatively, to be sure, include a brake on the system either as a stand alone device or as a brake motor.

POWERJACKS

CAVENDISH LABORATORY ANTENNA DISH

Position adjustment of Arcminute Microkelvin Imager (AMI) to achieve a pointing accuracy of better than half a minute of arc (1/120 of a degree). 10 x antenna dishes all in close proximity of each other. Measuring the weight of the universe by analysing "dark matter".

10 x off 50kN E-Series special metric ball screw jacks based on EBT0050 in translating screw configuration with a stroke of 1050mm. These ball screw jacks operate in normal UK outdoor conditions and allow the antenna to operate at wind speeds of up to 50mph.

For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

[__

POWERJACKS

Screw Jack Standard Performance

	Model		EBT0010 EBR0010		0025 0025		0050 0050	EBT EBR	0100 0100	EBT EBR	0200 0200	EBT0300 EBR0300	EBT0500 EBR0500		
	Capacity (k)	1)	10	2	5	5	0	10	00	20	00	300	500		
1.00	Diam	eter (mm)	20	2	5	4	0	5	0	6	3	80			
Lifting Screw	Lead	Option	1	1	2	1	2	1	2	1	2	1			
	Leau	Lead (mm)	5	5	10	10	20	10	20	10	20	20			
Gear Ratios	Or	tion 1	5:1		:1		:1	8		8	:1	10 2/3:1			
	Op	tion 2	20:1	24	4:1	24	i:1	24	:1	24	:1	32:1			
Turn of worm for travel	Option 1	6 Turn	6mm	5mm	10mm	10mm	20mm	7.5mm	15mm	7.5mm	15mm	11.25mm			
of Lifting Screw	Option 2	24 Turn	6mm	5mm	0mm	10mm	20mm	10mm	20mm	10mm	20mm	7.5mm			
Maximum Input	Gear Ra	tio Option 1	0.375	1	.5	:	3	3.	75	3.75		3.75		6.0	
Power (kW)	Gear Ra	tio Option 2	0.19	0.3	375	0.	55	1.1	25	1.1	25	1.9			
Start-up Torque at	Gear Ra	tio Option 1	2.7	5.9	11.1	23.4	44.6	36.4	68.5	75.2	139.4	182	lest		
full load (Nm) †	Gear Ra	tio Option 2	1.2	2.6	4.9	10.7	20.4	19.1	35.8	39.4	72.9	107.3	On Request		
Maximum Th	rough Torqu	e (Nm)	20	5	i9	10	68	34	47	39	76	1440	ō		
Lead Screw F	Restraining	orque (Nm)	9	23	43	88	167	181	340	370	690	1030			
Worm Shaft I	Maximum Ra	idial Load (N)	325	3	80	74	40	10	00	16	00	2170			
Maximum In	put Speed (r	om)	1800	18	00	18	00	18	00	18	00	1800			
Gear Case M	aterial		Aluminium	SG	Iron	SG	Iron	SG	Iron	Ste	eel	Seel			
Weight (kg) -		EMT	2.36	8.	45	14	4.9	24	.3	42	2.4	92.4			
= 150m	m	EMR	2.6	8.	85	16	.54	28	8.8	49	.58	113.78			
Weight (kg)		EMT	0.11	0.	21	0.	32	0.	58	0.	84	1.55			
extra 25r	nm	EMR	0.05	0.	11	0.	19	0.	36	0.	52	1.13			
Ball	Nut Safety I)evice	On Request	Stan	ıdard	Stan	dard	Stan	dard	Stan	dard	On Request			

† For loads of 25% to 100% of screw jack capacity, torque requirements are approximately proportional to the load.

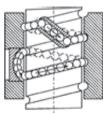
Efficiency - Option 1 Gear Ratio

Model	EBT0010 EBR0010		0025 0025		0050 0050		0100 0100		0200 0200	EBT0300 EBR0300	EBT0500 EBR0500
Gear Ratio	5:1	6	:1	6	:1	8	:1	8	:1	10 2/3:1	ist
Lifting Screw Lead (mm)	5	5	10	10	20	10	20	10	20	20	dne
Static Efficiency	0.603	0.565	0.600	0.567	0.595	0.546	0.581	0.529	0.571	0.492	Re
Dynamic Efficiency	0.681	0.662	0.692	0.663	0.687	0.645	0.674	0.631	0.665	0.595	o

Efficiency - Option 2 Gear Ratio

Model	EBT0010 EBR0010		0025 0025		0050 0050		0100 0100		0200 0200	EBT0300 EBR0300	EBT0500 EBR0500
Gear Ratio	20:1	24	i:1	24	i:1	24	i:1	24	:1	32:1	st
Lifting Screw Lead (mm)	5	5	10	10	20	10	20	10	20	20	enb
Static Efficiency	0.341	0.320	0.340	0.310	0.325	0.348	0.370	0.337	0.364	0.278	Re
Dynamic Efficiency	0.429	0.419	0.438	0.407	0.422	0.450	0.470	0.440	0.465	0.371	o

Note


1. Efficiency values for standard grease lubricated worm gear box and lifting screw.

Power Jacks ball nut employs the internal ball transfer system for recirculating the balls. This design provides for:

- Robust design
- Small ball nut body outer diameter
- Smooth movement
- Less turns per circuit
- Absence of parts liable to wear.

Solid formed nylon wiper seals on the ball nut prevents ingress of foreign matter and retain lubrication within the nut.

Standard

Ball Screw Life

L_d

Theoretical service life can be expressed in either L_{10} 10⁶ revolutions or L_h 10³ hours or L_d kilometres. As the life of a ball screw is determined by metal fatigue it is not possible to accurately predict life. However, it is practical to suppose that 90% of a sufficiently large number of equally sized ball screws running under equal working conditions will reach L_{10} or L_h without evidence of material fatigue. The L_{10} ball screw life is rated using the Dynamic Capacity, which is the maximum constant axial load that can be applied in running conditions for a life of 1.10⁶ revolutions of the ball screw. This can be expressed in linear travel (L_d).

Where L

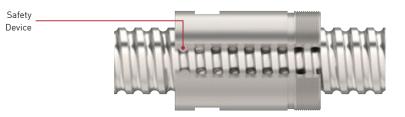
L10= Service Life (millions of revolutions)

$$= L_{10} * P \qquad L_{d} = Service$$

P = Pitch of Ball Screw (mm)

Life (km)

Li	inear Travel L _d ir	n km	Working Load (kN)										
Model	Capacity (kN)	Pitch (mm)	5	10	25	30	50	75	100	150	200	250	300
E28501	10	5	20.5	2.5	-	-	-	-	-	-	-	-	-
E3802	25	5	381	48	3	-	-	-	-	-	-	-	-
E38021	25	10	1 775	222	14	-	-	-	-	-	-	-	-
E3805	50	10	11 978	1 497	96	55	12	-	-	-	-	-	-
E38051	50	20	17 039	2 130	136	79	17	-	-	-	-	-	-
E3810	100	10	32 287	4 036	258	149	32	10	4	-	-	-	-
E38101	100	20	38 503	4 813	308	178	39	11	5	-	-	-	-
E3820	200	10	162 327	20 291	1 299	752	162	48	20	6	3	-	-
E38201	200	20	320 060	40 008	2 560	1 482	320	95	40	12	5	-	-
E3830	300	20	903 882	112 985	7 231	4 185	904	268	113	33	14	7	4


Use the following formulae to calculate the service life in terms of hours running:

$$L_{h} = \frac{L_{10} * Gr}{60 * n}$$

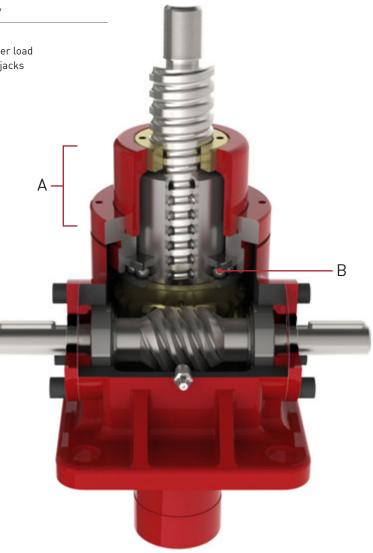
L_h= Service Life (hours)
 L₁₀= Service Life (revolutions)
 n_m= Mean Screw Jack Input Speed (rpm)
 Gr = Gear Ratio

Extra Safety As Standard with Integral Safety Device

25kN TO 200kN Power Jacks Metric Ball Screw Jacks have an integral safety device as standard. This provides two important safety roles:

- In the unlikely event of an excessive wear in the ball screw drive, the safety device will contact the screw shaft and act as an "ACME" Thread. This will provide early warning of any possible ball screw failure and is capable of providing drive in the event of any such failure. This can allow a control system to alert an operator to wear of this kind by monitoring the increase in motor current required to drive the system due to the increased friction generated by the device.
- 2. It allows the ball nut on the screw jack to sustain a load in the event of catastrophic ball failure. The safety of industrial and human cargo is therefore improved. Ball screw systems without this device could collapse under load or drop the carried load.

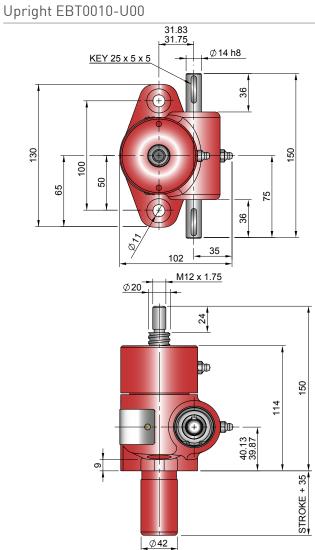
Note: Model 10kN & 300kN ball screw jack does not have safety device as standard, if required consult Power Jacks Ltd.


Optimal Ball Nut Alignment & Load Capability

Better by Design Power Jacks Ball Screw Jacks mount the upper load bearing directly on top of the gear the same as all other screw jacks in our range.

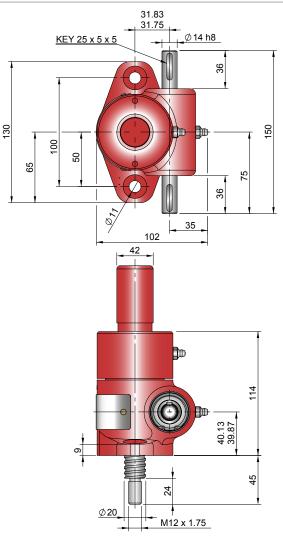
Advantages:

- A. Compact Design
- B. Optimum Gear Holding & Accuracy

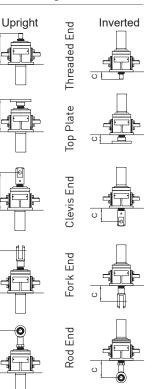


10kN Translating

130



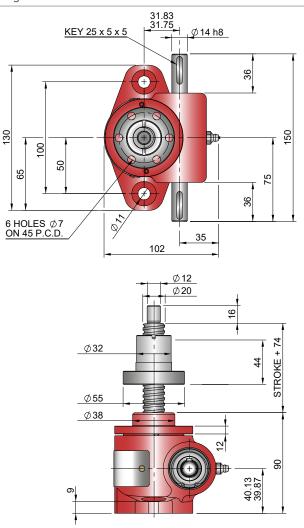
Performance


Model			EBR0010 EBT0010
Capacity		kN	10
	Diame	ter (mm)	20
Lifting Screw	Lead	Option	1
	Leau	mm	5
	Gear Ratio		5:1
Gear Ratio Option 1	Static Effic	iency	0.603
	Dynamic E	fficiency	0.681
	Gear Ratio		20:1
Gear Ratio Option 2	Static Effic	iency	0.341
	Dynamic E	fficiency	0.429
Max. Input	Gear Ratio	Option 1	0.375
power (kW)	Gear Ratio	Option 2	0.18
Start up torque at full load	Gear Ratio	Option 1	2.7
(Nm)	Gear Ratio	Option 2	1.2

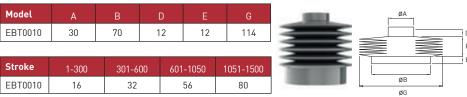
Model			EBR EBT				
Capacity	kN		1	0			
Lifting Screw I	Lead (mm)		Ę	5			
Turn of worm for	Gear Ratio 1	6 Turn	6m	ım			
travel of lifting screw Gear Ratio 2 24 Turn 6mm							
Maximum Thr	ough Torque (Nn	n)	2	0			
Lifting Screw I	Restraining Torq	ue (Nm)	9	7			
Worm Shaft M (N)	aximum Radial I	_oad	32	25			
Maximum Inpu	ut Speed (rpm)		18	00			
Gear Case Ma	terial		Alum	inium			
Mainht (ka)	150 mm		EMT	2.36			
weight (Kg) - S	Weight (kg) - stroke = 150mm EMR 2.6						
Weight (kg) - per extra 25mm stroke							
weight (kg) - p	er extra Zomms	ылоке	EMR	0.05			

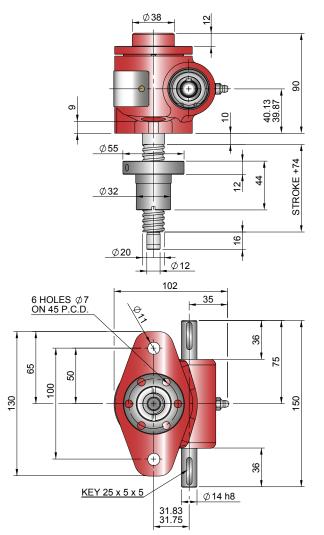
Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

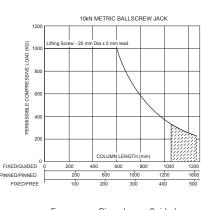
Closed Height

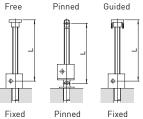

www.powerjacks.com

Upright EBR0010-U00


10kN Rotating

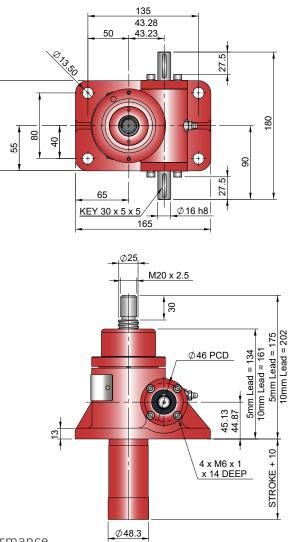



Closed	Thread	ed End	Top Plate		Clevis End		Fork	End	Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EBT0010	125	45	125	45	145	65	148	98	150	70
Stroke (mm)				EBT	0010 with	Bellows E	loots			
1-300	166	61	166	61	186	81	189	84	209	104
301-600	182	77	182	77	202	97	205	100	225	120
601-1050	206	101	206	101	226	121	229	124	249	144
1051-1500	230	125	230	125	250	145	253	148	273	168



- Note
 - 2
 - Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 10mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick. Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply 3
 - For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. 4
 - 5
 - Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks. 6 7

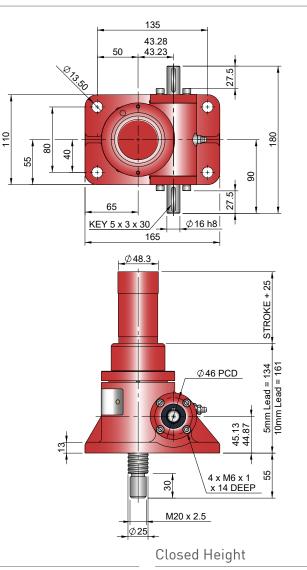
Column Strength


25kN Translating

Upright EBT0025-U00

110

Inverted EBT0025-I00

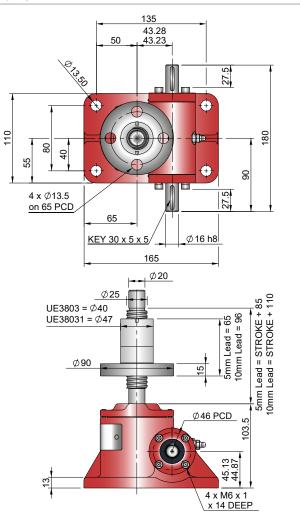


Model	EBT0025 EBR0025				
Capacity		kN	25		
	Diame	ter (mm)	25		
Lifting Screw	Lead	Option	1	2	
	Lead	mm	5	10	
	Gear Ratio		6:1		
Gear Ratio Option 1	Static Effic	iency	0.565	0.600	
	Dynamic E	fficiency	0.662	0.692	
Gear Ratio Option 2	Gear Ratio		24:1		
	Static Effic	iency	0.320	0.340	
	Dynamic E	fficiency	0.419	0.438	
Max. Input power (kW)	Gear Ratio	Option 1	1.5		
	Gear Ratio	Option 2	0.375		
Start up torque at full load	Gear Ratio	Option 1	5.9	11.1	
at full load (Nm)	Gear Ratio	Option 2	2.6	4.9	

Model	EBT0025 EBR0025					
Capacity	kN		25			
Lifting Screw	5	10				
Turn of worm for travel of lifting screw	Gear Ratio 1	6 Turn	5mm	10mm		
	Gear Ratio 2	24 Turn	5mm	10mm		
Maximum Thr	59					
Lifting Screw	23	43				
Worm Shaft M (N)	380					
Maximum Inp	1800					
Gear Case Ma	SG Iron					
Wainht (ka)	EMT		8.45			
Weight (kg) - stroke = 150mm			EMR	8.85		
Waight (kg)	EMT	0.21				
Weight (kg) - per extra 25mm stroke			EMR	0.11		

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

Upright Inverted Threaded End υ Top Plate υ **Clevis End** Fork End π Rod End

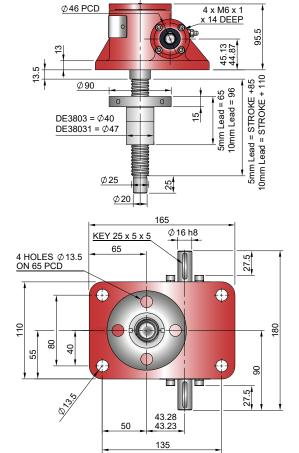

O

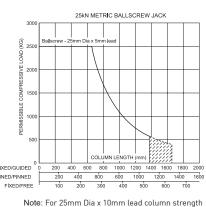
www.powerjacks.com

Upright EBR0025-U00

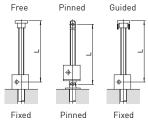
Inverted EBR0025-100

3


Closed	Threaded End			Top Plate		Clevis End		Fork End			Rod End				
Height "C"	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted
EBT0025	14	45	55	14	45	55	1	70	80	19	74	104	19	70	100
Stroke (mm)	EBT0025 with Bellows Boots														
Lead (mm)	5	10	5 & 10	5	10	5 & 10	5	10	5 & 10	5	10	5 & 10	5	10	5 & 10
1-300	180	200	100	180	200	100	205	225	125	229	249	149	240	260	160
301-600	190	210	110	190	210	110	215	235	135	239	259	159	250	270	170
601-1050	210	230	130	210	230	130	235	255	155	259	279	179	270	290	190
1051-1500	230	250	150	230	250	150	255	275	175	279	299	199	290	310	210


Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 10mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x (E +5mm) thick.

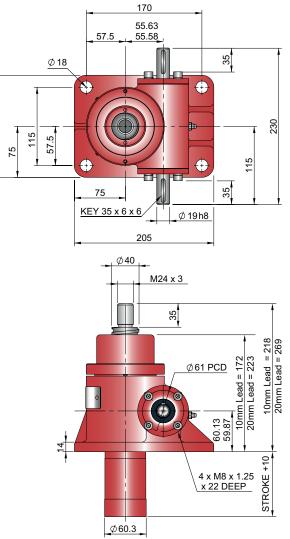
- 4
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 5


6 7 Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

Column Strength

25kN Rotating

107

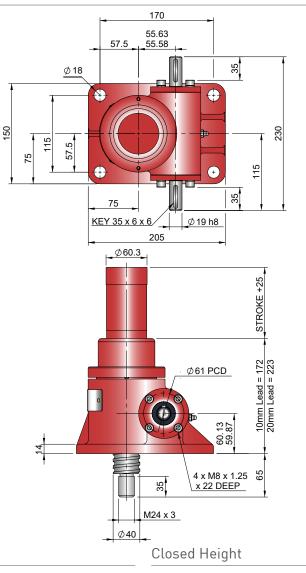

108 50kN Translating

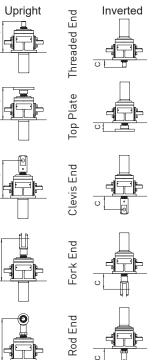
150

50kN

Upright EBT0050-U00

Inverted EBT0050-I00





Model	EBT0050 EBR0050				
Capacity		kN	50		
	Diame	ter (mm)	40		
Lifting Screw	Lead	Option	1	2	
	Leau	mm	10	20	
	Gear Ratio		6:1		
Gear Ratio Option 1	Static Effic	iency	0.567	0.595	
	Dynamic E	fficiency	0.633	0.687	
Gear Ratio Option 2	Gear Ratio		24:1		
	Static Effic	iency	0.310	0.325	
	Dynamic E	fficiency	0.407	0.422	
Max. Input power (kW)	Gear Ratio	Option 1	3.0		
	Gear Ratio	Option 2	0.55		
			1		
Start up torque at full load	Gear Ratio	Option 1	23.4	44.6	

Model	EBT0050 EBR0050				
Capacity	50				
Lifting Screw	10	20			
Turn of worm for travel of lifting screw	Gear Ratio 1	6 Turn	10mm	20mm	
	Gear Ratio 2	24 Turn	10mm	20mm	
Maximum Thr	168				
Lifting Screw I	88	167			
Worm Shaft M (N)	740				
Maximum Inpu	1800				
Gear Case Ma	SG Iron				
Mainht (ka)	EMT	14.9			
Weight (kg) - s	EMR	16.54			
Woight (kg)	EMT	0.32			
Weight (kg) - per extra 25mm stroke			EMR	0.19	
Note: All dimension	on in millimetres un	less otherv	vise stated.		

ote: All dimension in millimetres unless otherwise stated Designs subject to change without notice

www.powerjacks.com

Upright EBR0050-U00

150

Ø 18

115 57.5

75

4 HOLES Ø 18 ON 90 PCD

 \oplus

 \oplus

75

Ø40

Ø60

170

Inverted EBR0050-100

50kN Rotating

122

10mm Lead = STROKE +110 20mm Lead = STROKE + 160

230

115

35

109

55.63 57.5 55.58 4 x M8 x 1.25 0 61 PCD 22 DEEP 35 (1) 13 \oplus 4 60. 59. 8 230 Ø120 10mm Lead = 90 20mm Lead = 136 \oplus 115 35 Ø60 KEY 35 x 6 x 6 _Ø19 h8 205 Ø**25** Ø40 ଞ Ø25 30 10mm Lead = STROKE + 110 20mm Lead = STROKE + 160 205 KEY 35 x 6 x 6 Ø19 h8 10mm Lead = 90 20mm Lead = 136 75 4 HOLES Ø 18 ON 90 PCD 35

150

115 57.5

∞1∕

75

Closed	Tł	nreade	d End		Top Pl	ate		Clevis	End	Fork End		Rod End		nd	
Height "C"	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted
EBT0050	18	35	65	18	35	65	2	10	90	24	48	128	24	42	122
Stroke (mm)						EB	EBT0050 with Bellows Boots		ots						
Lead (mm)	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20
1-300	230	270	105	230	270	105	255	295	130	293	333	168	302	342	177
301-600	240	280	115	240	280	115	265	305	140	303	343	178	312	352	187
601-900	255	295	130	255	295	130	280	320	155	318	358	193	327	367	202
900-1050	260	300	135	260	300	135	285	325	160	323	363	198	332	372	207
1051-1500	280	320	155	280	320	155	305	345	180	343	383	218	352	392	227

2

Ŧ

Ø61 PCD

4 x M8 x 1.25 x 22 DEEP

60.13 59.87

33

Note:

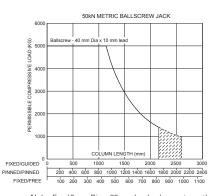

Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 15mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x [E +5mm] thick. Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply t Control tapes fitted (increase outer diameter by 20mm approximately). 3

4

For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 5

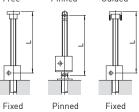
6 7

Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.



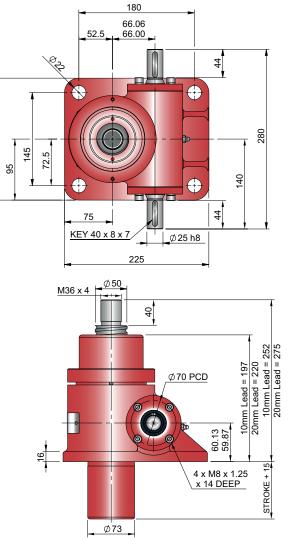
 \oplus

 \oplus


 \oplus

Column Strength

Free Pinned Guided

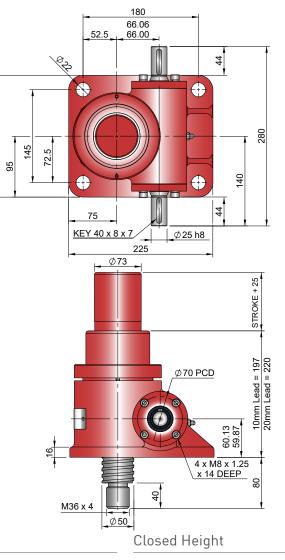

100kN Translating

Upright EBT0100-U00

190

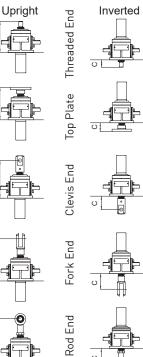
Inverted EBT0100-I00

190



Performance

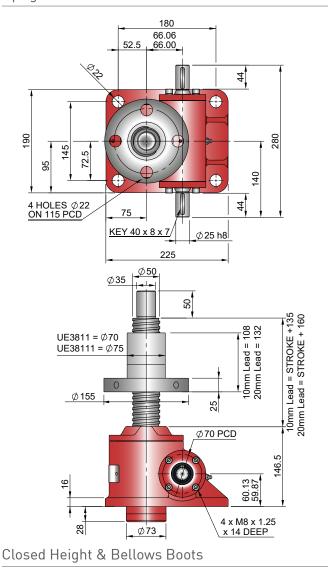
Model				0100 0100		
Capacity		kN	10)0		
	Diame	ter (mm)	5	0		
Lifting Screw	Lead	Option	1	2		
	Leau	mm	10	20		
	Gear Ratio		8:	:1		
Gear Ratio Option 1	Static Effic	iency	0.546	0.581		
	Dynamic Efficiency		Dynamic Efficiency		0.645	0.674
	Gear Ratio		24	:1		
Gear Ratio Option 2	Static Effic	iency	0.348	0.370		
	Dynamic E	fficiency	0.450	0.470		
Max. Input	Gear Ratio	Option 1	3.75			
power (kW)	Gear Ratio	Option 2	1.1	25		
Start up torque	Gear Ratio Option 1		36.4	68.5		
(Nm)	Gear Ratio	Option 2	19.1	35.8		

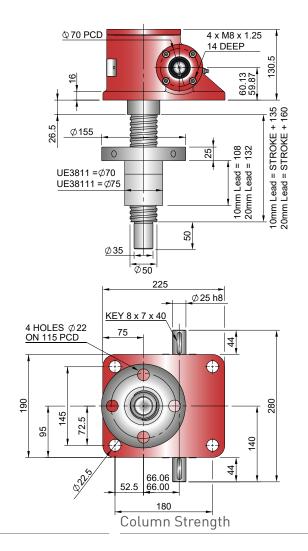

Model			EBT(EBR)			
Capacity	kN		10	00		
Lifting Screw	mm)		10	20		
Turn of worm for	Gear Ratio 1	6 Turn	7.5mm	15mm		
travel of lifting screw	Gear Ratio 2	24 Turn	10mm	20mm		
Maximum Thr	ough Torque (Nn	n)	347			
Lifting Screw I	Restraining Torq	ue (Nm)	181 340			
Worm Shaft M (N)	aximum Radial I	_oad	10	00		
Maximum Inpu	ut Speed (rpm)		18	00		
Gear Case Ma	terial		SG	Iron		
Woight (kg)	EMT 24.3					
vvergrit (kg) - S	(kg) - stroke = 150mm EMR 28.8					
Woight (kg)	ght (kg) - per extra 25mm stroke					
vveignt (kg) - p	ier extra zomm s	ытоке	EMR	0.36		

Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice

JACKS

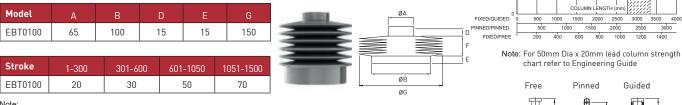
シーカ


O



100kN Rotating

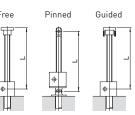
Upright EBR0100-U00


Inverted EBR0100-I00

1.2.1

Top Plate Clevis End Rod End Threaded End Closed Height "C Upright Upriaht Upriaht Upright Inverted Inverted Upright Inverted Inverted Inverted EBT0100 Stroke (mm) EBT0100 with Bellows Boots 10 & 20 10 & 20 Lead (mm) 10 & 20 10 & 20 10 & 20 1-300 301-600 601-1050 1051-1500

Note


Inverted Screw Jacks - Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 20mm Inverted Screw Jacks - Recommended bellows boot mounting plate ØB x (E +5mm) thick.

Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply † Control tapes fitted (increase outer diameter by 20mm approximately).

For horizontal installations with than 450 mm of stroke, internal bood guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar.

7

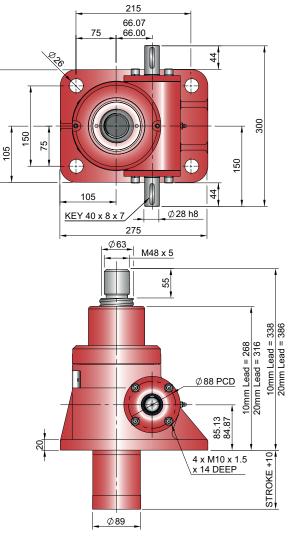
Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

Pinned

Fixed

100kN METRIC BALLSCREW JACK

Fixed

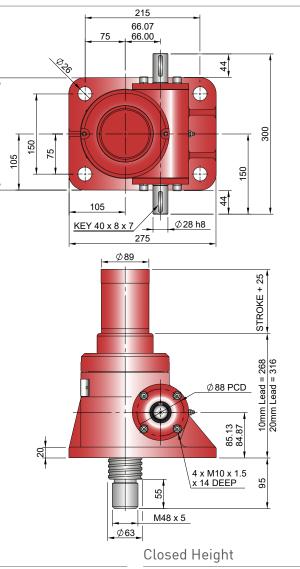

112 200kN Translating

Upright EBT0200-U00

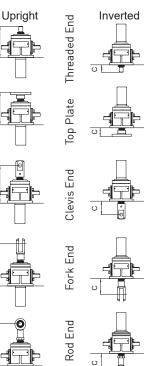
210

Inverted EBT0200-I00

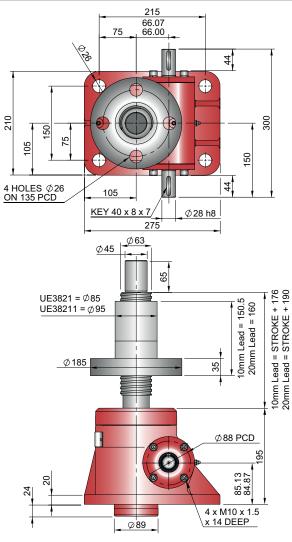
210

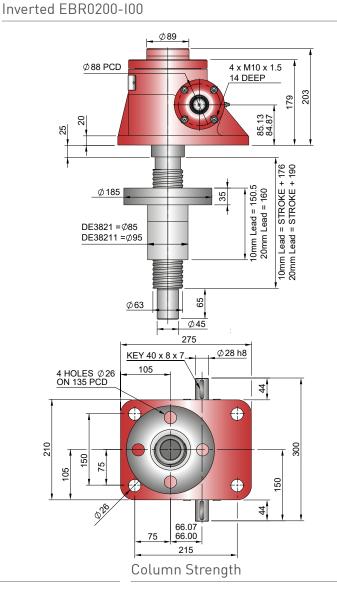


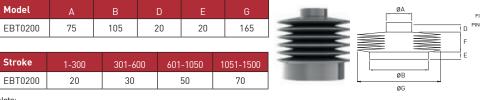
Model			EBT EBR	0200 0200
Capacity		kN	20	00
	Diame	ter (mm)	6	3
Lifting Screw	Lead	Option	1	2
	Leau	mm	10	20
	Gear Ratio		8	:1
Gear Ratio Option 1	Static Effic	iency	0.529	0.571
	Dynamic E	fficiency	0.631	0.665
	Gear Ratio		24	:1
Gear Ratio Option 2	Static Effic	iency	0.337	0.364
	Dynamic E	fficiency	0.440	0.465
Max. Input	Gear Ratio	Option 1	3.	75
power (kW)	Gear Ratio	Option 2	1.1	25
Start up torque at full load	Gear Ratio	Option 1	75.2	139.4
at full load (Nm)	Gear Ratio	Option 2	39.4	72.9

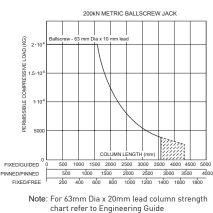

Model			EBT0200 EBR0200			
Capacity	kN		20	00		
Lifting Screw	(mm)		10	20		
Turn of worm for	Gear Ratio 1	6 Turn	7.5mm	15mm		
travel of lifting screw	Gear Ratio 2	24 Turn	10mm	20mm		
Maximum Thr	rough Torque (Nm) 396					
Lifting Screw	Restraining Torque (Nm) 370 690					
Worm Shaft M (N)	aximum Radial I	_oad	16	00		
Maximum Inp	ut Speed (rpm)		18	00		
Gear Case Ma	terial		Ste	eel		
Woight (kg)	(lug) starks 150mm EMT 42.4					
weight (kg) - s	ht (kg) - stroke = 150mm EMR 49.58					
Woight (kg)	Veight (kg) per extra 25mm strake					
vvergrit (kg) - p	g) - per extra 25mm stroke EMR 0.52					
Note: All dimensi	on in millimetres un	less other	hatete eziv			

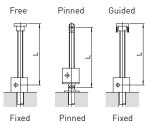
Note: All dimension in millimetres unless otherwise stated. Designs subject to change without notice


PO


WERJACKS


Upright EBR0200-U00





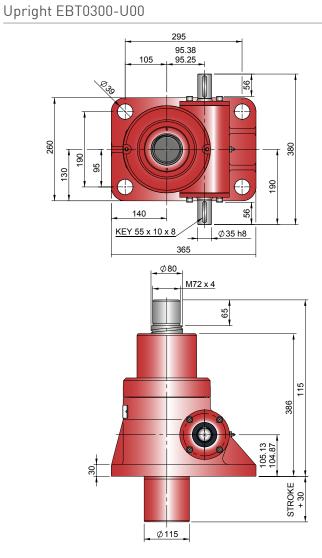
Closed Height & Bellows Boots

Closed		nreade	d End		Top Pl	ate		Clevis	End	Fork End		Rod En		nd	
Height "C"	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted	Upr	ight	Inverted
EBT0200	20	00	80	20	00	80	2	45	125	30)2	182	28	33	163
Stroke (mm)						EB	EBT0200 with Bellows Boots		ots						
Lead (mm)	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20	10	20	10 & 20
1-300	348	396	140	348	396	140	393	441	185	483	531	275	470	518	262
301-600	358	406	150	358	406	150	403	451	195	493	541	285	480	528	272
601-1050	378	426	170	378	426	170	423	471	215	513	561	305	500	548	292
1051-1500	398	446	190	398	446	190	443	491	235	533	581	325	520	568	312

Note

- Inverted Screw Jacks Bellows Boot Closed Height assumes screw jack mounted on a structure with thickness = 20mm Inverted Screw Jacks Recommended bellows boot mounting plate ØB x (E +5mm) thick.
- Inverted Screw Jacks Screw Jack mounting plate & bellows boot mounting plate are customers own supply + Control tapes fitted (increase outer diameter by 20mm approximately). 3
- 4
- For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 5

6 7 Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.


Pinned

300kN Translating

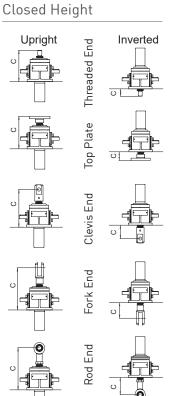
56

Inverted EBT0300-I00

33 \oplus 260 380 190 95 130 \oplus \bigcirc 190 56 140 KEY 55 x 10 x 8 Ø35 h8 365 Ø115 STROKE + 25 Ø107 PCD 360 .13 105. 104. 30 4 x M10 x 1.5 x 19 DEEP 115 65 M72 x 4 Ø95

295

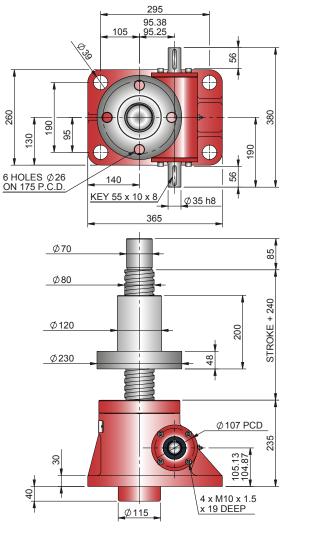
95.38 95.25


105

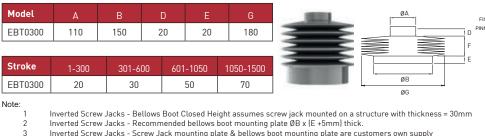
Performance

Model			EBT0300 EBR0300
Capacity		kN	300
	Diame	ter (mm)	80
Lifting Screw	Lood	Option	1
	Lead mm		20
	Gear Ratio		10 2/3:1
Gear Ratio Option 1	Static Efficiency		0.492
	Dynamic Efficiency		0.595
	Gear Ratio		32:1
Gear Ratio Option 2	Static Efficiency		0.278
	Dynamic E	fficiency	0.371
Max. Input	Gear Ratio	Option 1	6.0
power (kW)	Gear Ratio Option 2		1.9
Start up torque at full load	Gear Ratio Option 1		182
(Nm)	Gear Ratio	Option 2	107.3

Model			EMT EMR	0300 0300	
Capacity	kN		30	00	
Lifting Screw	mm)		2	0	
Turn of worm for	Gear Ratio 1	6 Turn	11.25	ōmm	
travel of lifting screw	Gear Ratio 2	24 Turn	7.5	mm	
Maximum Thr	rough Torque (Nm) 1440				
Lifting Screw	Restraining Torque (Nm) 1030				
Worm Shaft M (N)	aximum Radial I	_oad	21	70	
Maximum Inp	ut Speed (rpm)		18	00	
Gear Case Ma	terial		Ste	eel	
Waight (kg)	EMT 92.4				
weight (Kg) - S	/eight (kg) - stroke = 150mm EMR 113.78				
Weight (kg) - per extra 25mm stroke EMT 1.55					
Weight (kg) - per extra 25mm stroke EMR 1.13					


te: All dimension in millimetres unl Designs subject to change without notice

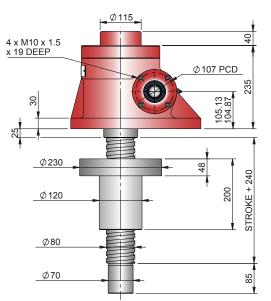
Upright EBR0300-U00

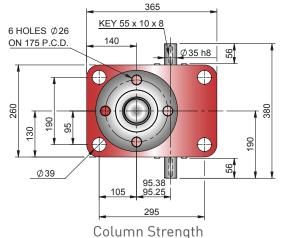

260

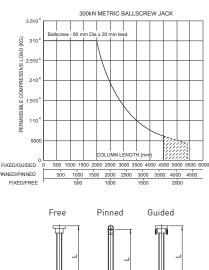
Inverted EBR0300-I00

Closed Height & Bellows Boots

Closed	Thread	ed End	Top I	Plate	Clevi	s End	Fork	End	Rod End	
Height "C"	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted	Upright	Inverted
EBT0300	325	115	325	115	365	155	148	98	150	70
Stroke (mm)				EBT	0300 with	Bellows E	loots			
1-300	470	135	470	135	510	175	-	-	-	-
301-600	480	145	480	145	520	185	-	-	-	-
601-1050	500	165	500	165	540	205	-	-	-	-
1051-1500	520	185	520	185	560	225	-	-	-	-




Inverted Screw Jacks - Screw Jack mounting plate & bellows boot mounting plate are customers own supply + Control tapes fitted (increase outer diameter by 20mm approximately). 4


5

For horizontal installations with than 450 mm of stroke, internal boot guides are recommended. Customers with threaded end screw jacks must provide a fixing for the unattached bellows boot collar. 6 7

Bellows boots for Rotating Screw Jacks, other sizes, stroke and materials please consult Power Jacks.

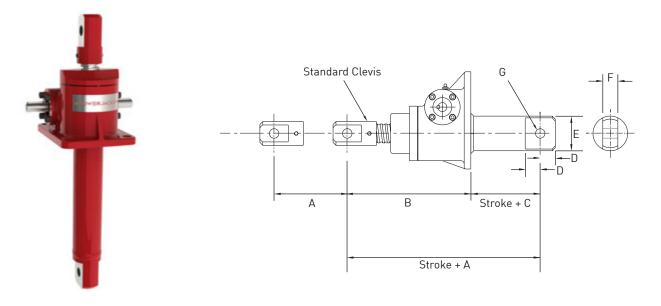
Pinned

Fixed

300kN Rotating

/_

Fixed


4

E-Series Ball Screw Jack

PERFORMANCE ENHANCED VARIANTS TO SOLVE SPECIFIC APPLICATION REQUIREMENTS

Double Clevis

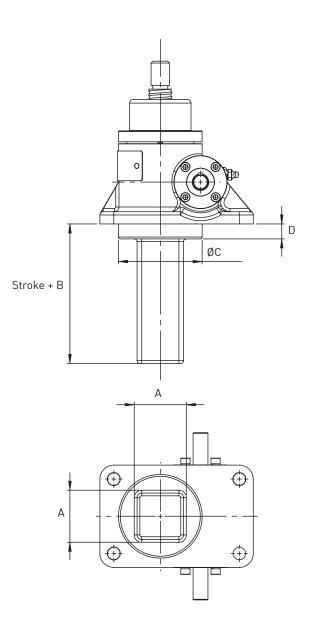
Model	EBT0010	EBT	0025	EBT	0050	EBT	0100	EBT	0200	EBT0300	EBT0500
Capacity	10	25	25	50	50	100	100	200	200	300	500
Lead Option	1	1	2	1	2	1	2	1	2	1	1
A		260	287	313	364	427	450	525	573		
В		202	229	245	296	299	322	386	434		L
С	uest	58	58	68	68	128	128	139	139	uest	uest
D	Req	23	23	30	30	33	33	40	40	Req	Req
E	on F	48.3	48.3	60.3	60.3	73	73	102	102	on F	on F
F	1	30	30	35	35	40	40	50	50	ple	ole
G	Available	16	16	20	20	22	22	30	30	Availah	Available
Max Raise at Max Rated Load in Compression	Ava	280	200	600	560	658	588	769	621	Ava	Avé

Note

- 1. For other performance and dimension information refer to translating screw models.
- 2. All dimensions in millimetres unless otherwise stated.

Reduced Backlash Ball Screw Jacks

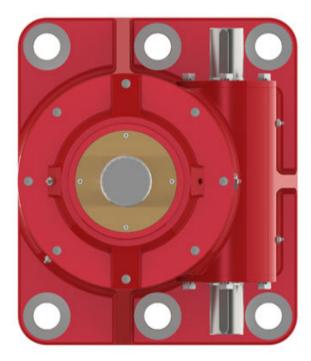
Metric Ball Screw Jacks can be provided with preloaded ball nuts to give reduced axial backlash as a high efficiency alternative to the metric machine screw anti-backlash option. Preloading on the ball nut is obtained by the "Interference Ball" method. By fitting Interference balls in the ball nut to obtain a diametrical interference fit and using the original track form, a four-point contact results. The anti-rotation device is available for translating ball screw models only. It is used only when the load to be moved (actuated) may rotate, i.e. the screw is unguided and does not prevent rotation.


The anti-rotation device consists of a square steel tube which guides the movement of a square aluminium bronze guide block fitted to the end of the ball screw. The guide block also acts as a stop nut.

Model	EBT0010	EBT0025	EBT0050	EBT0100	EBT0200	EBT0300	EBT0500
Capacity (kN)	10	25	50	100	200	300	500
А	AOR	50	70	AOR	AOR	AOR	AOR
В	AOR	50	60	AOR	AOR	AOR	AOR
С	AOR	90	115	AOR	AOR	AOR	AOR
D	AOR	16	20	AOR	AOR	AOR	AOR

Note

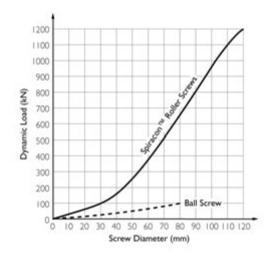
- 1. AOR = Application On Request, consult Power Jacks Ltd.
- 2. All dimensions in millimetres unless otherwise stated.



E-Series Roller Screw Jack

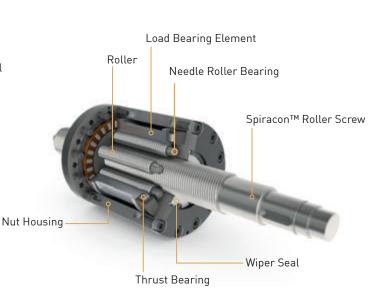
HIGH PRECISION PLANETARY ROLLER SCREW INTEGRATED WITH OUR FLEXIBLE E-SERIES DESIGN FOR A SCREW JACK THAT MEETS THE NEEDS OF HIGH DUTY & HIGH LOAD APPLICATIONS.

Features


- High Performance Power Jack
- Metric Single Face Roller Screw Jacks
- Capacities up to 1000kN as standard
- High precision planetary roller screw
- Translating and Rotating Screw in Upright and Inverted types
- Precision Worm Gear Set
- 2 Gear ratios and 2 screw leads as standard
- Anti-Rotation Option
- 6 mounting options including trunnion and double clevis
- Special custom designs available

122 Features

Principle of Operation


The Spiracon[™] system consists of a multi-start screw with an involute thread form and a number of planetary rollers with annular grooves, which engage with the screw. These rollers also engage with a grooved load bearing element, which transmits the load through roller thrust bearings, to the nut housing. The rolling action results in a high efficiency mechanism, while the line contact and hardened and ground construction achieves a high dynamic load carrying capacity, together with almost no axial backlash or wear.

An extensive range of axially translating and rotating screw jacks fitted with the patented Spiracon roller screw and designed specifically to customers' application requirements. The Spiracon roller screw is an extremely high performance screw mechanism exhibiting almost no axial backlash and is designed to meet the following demands:

- High precision and repeatable positioning
- High speed
- High dynamic load capacity
- High duty
- High efficiency
- Long life
- Minimum maintenance requirements

The range covers lifting capacities up to 1000kN, with many design features available to meet the customers' particular requirements. The units' gearbox is based on the standard range of Power Jacks screw jacks, although other gearbox types can be designed for specific applications. The gearboxes are either grease or oil lubricated depending on the application. The roller screw is based around the standard Spiracon planetary roller screw range, with alternative nut housings available to meet the requirements of specific applications.

Features 123

Typical Applications

Roller Screw Jacks are generally used when the application is moving a high load with a high duty cycle. Size for size roller screws offer higher load carrying capabilities than ball screws so for high load applications allow for more compact working envelopes. The high efficiency of the roller screw & nut significantly increase the efficiency of a screw jack in comparison to a Machine Screw Jack. Due to their high efficiency they nearly always require a brake to hold position. They are used in a wide variety of applications including Automotive, Steel, Defence and Nuclear.

Standard Designs

The standard E-Series roller screw jack is available in translating and rotating screw designs in capacity sizes up to 1000kN. The design is optimised for high load and high performance in a compact form. There is a large selection of options and accessories (section-7) available so you can configure a standard design that is just right for your application.

These options include Low-Backlash and Anti-Rotation designs.

Special Designs

We can fully customise our screw jacks so that your application can be the best.

Customisation can be anything from a small modification such as an extra bolt hole on an end fitting to a completely new design of screw jack based on our class leading technology.

For more details please see the Special Screw Jack information in Section-8 or contact us today with your requirements. Our team are looking forward to working with you.

Selecting the Right Screw Jack

Consider all application constraints then choose a product that looks suitable for the intended application. Calculate the power and torque requirements. This is a 5 step process:

- Screw Jack Input Speed (RPM)
- Operating Input Power (kW)
- Operating Input Torque (Nm)
- Screw Jack Start-up Torque (Nm)
- Mechanical Power and Torque Check

Systems

The screw jacks can be connected together in systems so that multiple units can be operated and controlled together. These jacking system arrangements or configurations can be built in many formats with the use of bevel gearboxes, motors, reduction gearbox, drive shafts, couplings, plummer blocks and motion control devices.

The use of bevel gearboxes allows the distribution of drive throughout a jacking system. The gearboxes come in 2, 3 and 4 way drive types. See the Bevel Gearboxes Section-10 for more details.

Bevel gearboxes and other system components can also be supplied in stainless steel or other corrosion resistant designs.

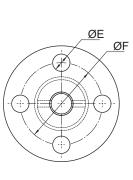
Two of the most popular system configurations are the 'H' and 'U' configured jacking systems. Remember that multiple screw jacks can be linked together mechanically or electrically. The latter is useful if there is no space for linking drive shafts.

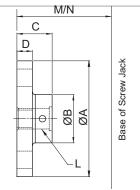
If multiple roller screw jacks are connected in a mechanically linked system then the complete system in some circumstances may be considered self-locking depending on the gear ratios and efficiencies of units in the system. In general, Power Jacks recommend a brake is used on **ALL** Roller Screw Jack systems. If you would like this checked, consult Power Jacks. Alternatively, to be sure, include a brake on the system either as a stand alone device or as a brake motor.

6

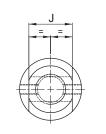
E-Series Screw Jack

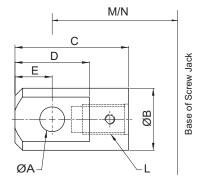
ACCESSORIES FOR ALL MACHINE SCREW, STAINLESS STEEL, BALL SCREW AND ROLLER SCREW JACKS

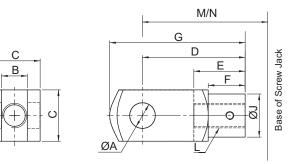


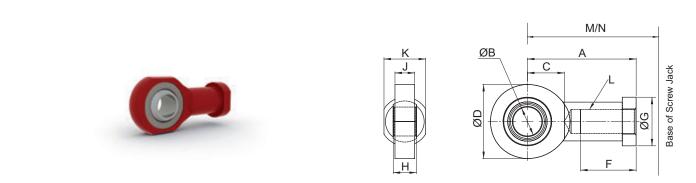


Top Plate






Clevis End



Fork End

Rod End

End Fittings 1						
	1 4		ne.		T a l	
		-				

6

	Capacity	/ (kN)	5	10	25	50	100	200	300	500	1000	1500	2000
	ļ	ØA	65	80	100	120	150	170	240	280	380	400	470
	ļ	ØВ	25	30	40	50	65	75	110	150	200	215	265
		С	21	25	31.5	36.5	42	58	67	92	127	162	172
		D	8	10	12	16	20	25	30	35	75	80	100
Plate	ØE x QTY		9 x 4	11 x 4	13.5 x 4	18 x 4	22 x 4	26 x 4	33 x 4	33 x 4	51 x 4	51 x 6	52 x 8
	ØF (PCD)		45	55	70	85	110	120	170	215	290	310	370
Тор		L	M10 x 1.5	M12 x 1.75	M20 x 2.5	M24 x 3	M36 x 4	M48 x 5	M72 x 4	M100 x 4	M125 x 4	M145 x 6	M180 x 8
	M#1	Upright	95	125	145	185	200	265	325	390	560	620	690
	M	Inverted	40	45	55	65	80	95	115	150	260	230	280
	N#2	Upright	-	150	175	218	252	338	445	-	-	-	-
	IN"2	Inverted	-	45	55	65	80	95	115	-	-	-	-

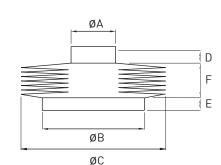
	Сара	city (kN)	5	10	25	50	100	200	300	500	1000	1500	2000
		ØA	10	12	16	20	22	30	45	60	90	105	125
		ØВ	25	30	40	50	65	75	110	150	200	230	270
		С	56	63	79.5	91.5	120	143	167	217	297	404	490
		D	30	36	46	60	66	80	120	150	210	215	270
Plate	E		15	18	23	30	33	40	60	75	105	105	130
	J		15	20	30	35	40	50	80	110	140	150	175
Clevis		L	M10 x 1.5	M12 x 1.75	M20 x 2.5	M24 x 3	M36 x 4	M48 x 5	M72 x 4	M100 x 4	M125 x 4	M145 x 6	M180 x 8
	M#1	Upright	115	145	170	210	245	310	365	440	625	760	880
	M	Inverted	60	65	80	90	125	140	155	200	325	370	470
	N#2	Upright	-	170	200	243	297	383	485	-	-	-	-
	IN"2	Inverted	-	65	80	90	125	140	155	-	-	-	-

	Capa	city (kN)	5	10	25	50	100	200	300	500	1000	1500	2000
		ØA	10	12	20	25	35	50					
		В	10	12	20	25	35	50					
		С	20	24	40	50	70	96					
		D	40	48	80	100	144	192		L	L _	<u>ب</u>	
		E	20	24	40	50	72	96	nes	Request	nes	nes	Request
pu		F	15	18	30	36	54	73	Request	Req	Request	Request	Req
ш	G		52	62	105	132	188	265	uo	uo	uo	uo	uo a
L L		ØJ	18	20	34	42	60	82	Available	Available	Available	Available	Available
		L	M10 x 1.5	M12 x 1.75	M20 x 2.5	M24 x 3	M36 x 4	M48 x 5	vail	vail	vail	vail	vail
	M#1	Upright	114	148	194	248	302	400					▼
	IMI	Inverted	59	68	104	128	182	230					
	N#2	Upright	-	173	224	281	354	473					
	IN ^{#2}	Inverted	-	68	104	128	182	230					

	Capa	city (kN)	5	10	25	50	100	200	300	500	1000	1500	2000
		А	43	50	77	94	125	160					
[ØВ	10	12	20	25	35	50					
		С	15	18	27	32	42	60					
		ØD	29	34	53	64	82	112]				
		F	-	23	40	48	60	68	est	est	est	est	est
		ØG	19	22	35	42	58	75	equest	equest	edne	Request	Request
End		Н	9	10	16	20	25	35	on R	on R	on Request	on R	on R
Rod		J	7	8	13	17	21	30	ole c				
		K	17	19	32	36	50	65	Available	Available	Available	Available	Available
		L	M10 x 1.5	M12 x 1.75	M20 x 1.5	M24 x 2	M36 x 3	M45 x 3	Ava	Ava	Ava	Ava	Ava
	M#1	Upright	117	150	190	242	283	367					
	IVI " '	Inverted	62	70	100	122	163	197					
	N#2	Upright	-	175	220	275	335	440]				
	IN ^{#2}	Inverted	-	70	100	122	163	197					

Note

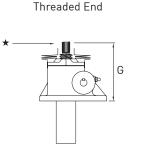
1. M = For Machine Screw Jacks

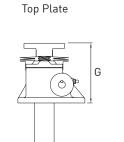

2. N = For Ball Screw Jacks, Standard Lead only.

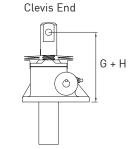
Features

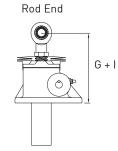
- Protects the screw from dust and dirt
- Guards against moisture and corrosive contaminants
- Helps maintain the proper lubrication
- Boots are made of P.V.C. coated nylon with sewn construction. Other materials are available for applications involving high temperatures, highly corrosive atmospheres and other special conditions.

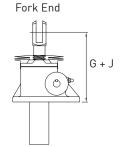
Boot Dimensions


Model	А	В	С	D	E
EMT0005	25	60	100	13	13
EMT0010	30	70	110	15	15
EMT0025	40	90	120	15	23
EMT0050	50	115	140	15	31
EMT0100	65	136	150	15	31
EMT0200	75	165	165	20	20
EMT0300	110	220	191	20	20
EMT0500	150	285	210	20	45
EMT1000	200	220	244	20	20
EMT1500	215	410	480	25	25
EMT2000	265	396	470	25	25




	Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
	Stroke $0 \rightarrow 150$	10	8	8	8	-	-	-	-	-	-	-
	Stroke $0 \rightarrow 300$	20	20	20	20	20	20	20	20	20	-	-
	Stroke $0 \rightarrow 500$	-	-	-	-	-	-	-	-	-	20	25
	Stroke $301 \rightarrow 600$	30	35	30	30	30	30	30	30	30	-	-
F	Stroke 501 \rightarrow 1000	-	-	-	-	-	-	-	-	-	45	40
	Stroke $601 \rightarrow 1050$	-	-	50	50	50	50	50	50	50	-	-
	Stroke 1051 → 1500	-	-	70	70	70	70	70	70	70	-	-
	Stroke 1001 \rightarrow 2000	-	-	-	-	-	-	-	-	-	80	75†
	Stroke 2001 \rightarrow 4000	-	-	-	-	-	-	-	-	-	160	145†


F = Bellows boot minimum closed thickness, - = Not applicable

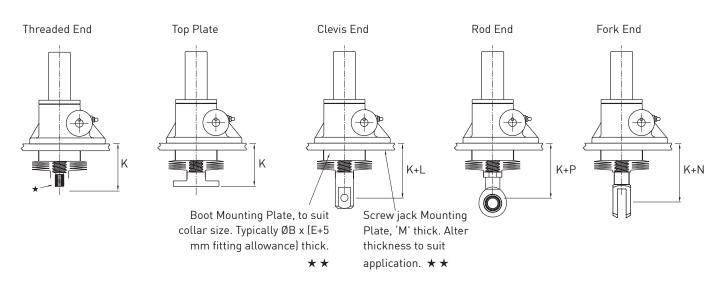

Closed Heights

Notes for all metric machine screw jacks with bellows boots

- 1. Supplied complete with a set of corrosion-resistant 'jubilee' clips (2) suitable for fitting over collar diameters.
- 2. † Control tapes are fitted (approximately 20 mm increase to outer diameter).
- 3. For horizontal installation exceeding 450 mm of travel, internal boot guides are recommended.
- 4. Customers with threaded end screw jacks must provide a fixing for the unattached collar (\bigstar).
- 5. Bellows boots for Rotating Screw Jacks consult Power Jacks Ltd.
- 6. For other sizes, strokes and materials please consult Power Jacks Ltd.
- 7. All dimensions in millimetres unless otherwise stated.
- 8. Dimensions subject to change without notice.
- 9. Screw Jack mounting plate and bellows boot mounting plate are usually all part of the customers superstructure (★ ★).
 For other options consult Power Jacks.

	Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
	Stroke $0 \rightarrow 150$	95	125	145	185	-	-	-	-	-	-	-
	Stroke $0 \rightarrow 300$	120	130	145	185	200	265	325	390	560	-	-
	Stroke $0 \rightarrow 500$	-	-	-	-	-	-	-	-	-	620	690
	Stroke 301 \rightarrow 600	120	140	170	210	200	265	325	415	560	-	-
G	Stroke 501 \rightarrow 1000	-	-	-	-	-	-	-	-	-	630	690
	Stroke 601 \rightarrow 1050	-	-	195	210	225	290	350	440	585	-	-
	Stroke 1051 → 1500	-	-	195	235	250	315	375	465	610	-	-
	Stroke 1001 \rightarrow 2000	-	-	-	-	-	-	-	-	-	665	695†
	Stroke 2001 \rightarrow 4000	-	-	-	-	-	-	-	-	-	745	795†
н	Extra Closed Height for Clevis	20	20	25	25	45	45	40	50	65	140	190
I	Extra Closed Height for Fork	19	23	49	63	102	135	Request	Request	Request	Request	Request
J	Extra Closed Height for Rod End	37	40	60	72	98	122	Request	Request	Request	Request	Request

Closed Height for all Upright Machine Screw Jacks and Anti-Rotation (Keyed) Types


Closed Height for all Upright Machine Screw Jacks with Anti-Backlash

	Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
	Stroke $0 \rightarrow 150$	95	125	145	185	-	-	-	-	-	-	-
	Stroke $0 \rightarrow 300$	120	130	145	185	200	265	340	415	585	-	-
	Stroke 0 \rightarrow 500	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 301 \rightarrow 600	120	140	170	210	200	265	340	440	585	-	-
G	Stroke 501 \rightarrow 1000	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 601 \rightarrow 1050	-	-	195	210	225	290	340	465	610	-	-
	Stroke 1051 → 1500	-	-	195	235	250	315	365	490	635	-	-
	Stroke 1001 → 2000	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 2001 \rightarrow 4000	-	-	-	-	-	-	-	-	-	Request	Request
н	Extra Closed Height for Clevis	20	20	25	25	45	45	40	50	65	Request	Request
I	Extra Closed Height for Fork	19	23	49	63	102	135	Request	Request	Request	Request	Request
J	Extra Closed Height for Rod End	37	40	60	72	98	122	Request	Request	Request	Request	Request

Closed Height for all Upright Machine Screw Jacks with Anti-Backlash & Anti-Rotation (Keyed)

	Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
	Stroke $0 \rightarrow 150$	95	125	145	185	-	-	-	-	-	-	-
	Stroke $0 \rightarrow 300$	120	130	145	185	200	265	340	415	585	-	-
	Stroke $0 \rightarrow 500$	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 301 \rightarrow 600	120	140	170	195	200	265	340	440	585	-	-
G	Stroke 501 → 1000	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 601 \rightarrow 1050	-	-	195	195	225	290	365	465	610	-	-
	Stroke $1051 \rightarrow 1500$	-	-	195	220	250	315	390	490	635	-	-
	Stroke 1001 → 2000	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 2001 → 4000	-	-	-	-	-	-	-	-	-	Request	Request
н	Extra Closed Height for Clevis	20	20	25	25	45	45	40	50	65	Request	Request
I	Extra Closed Height for Fork	19	23	49	63	102	135	Request	Request	Request	Request	Request
J	Extra Closed Height for Rod End	37	40	60	72	98	122	Request	Request	Request	Request	Request

Closed Heights

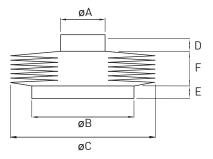
Closed Height for all Inverted Machine Screw Jacks Standard or Anti-Backlash or Anti-Rotation (Keyed)

	Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
М	Mounting Plate	10	10	15	15	20	20	30	30	50	60	70
	Stroke $0 \rightarrow 150$	70	75	80	110	-	-	-	-	-	-	-
	Stroke $0 \rightarrow 300$	90	95	80	120	105	120	140	175	260	-	-
	Stroke $301 \rightarrow 500$	-	-	-	-	-	-	-	-	-	230	280
	Stroke $301 \rightarrow 500$	90	95	105	130	130	145	165	200	260	-	-
K	Stroke $501 \rightarrow 1000$	-	-	-	-	-	-	-	-	-	225	280
	Stroke $601 \rightarrow 1050$	-	-	130	150	130	145	165	225	285	-	-
	Stroke $1051 \rightarrow 1500$	-	-	130	170	155	170	190	250	310	-	-
	Stroke 1001 \rightarrow 2000	-	-	-	-	-	-	-	-	-	290	285†
	Stroke 2001 \rightarrow 4000	-	-	-	-	-	-	-	-	-	370	350†
L	Extra Closed Height for Clevis	20	20	25	25	45	45	40	50	65	140	190
N	Extra Closed Height for Fork	19	23	49	63	102	135	Request	Request	Request	Request	Request
Р	Extra Closed Height for Rod End	37	40	60	72	98	122	Request	Request	Request	Request	Request

Closed Height for all Inverted Machine Screw Jacks with Anti-Backlash and Anti-Rotation (Keyed)

	Model	EMT0005	EMT0010	EMT0025	EMT0050	EMT0100	EMT0200	EMT0300	EMT0500	EMT1000	EMT1500	EMT2000
М	Mounting Plate	10	10	15	15	20	20	30	30	50	60	70
	Stroke $0 \rightarrow 150$	70	75	80	110	-	-	-	-	-	-	-
	Stroke $0 \rightarrow 300$	90	95	80	120	105	135	140	238	405	-	-
	Stroke $301 \rightarrow 500$	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke $301 \rightarrow 500$	90	95	105	130	130	160	165	263	405	-	-
ĸ	Stroke $501 \rightarrow 1000$	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke $601 \rightarrow 1050$	-	-	130	150	130	160	165	288	430	-	-
	Stroke $1051 \rightarrow 1500$	-	-	130	170	155	185	190	313	455	-	-
	Stroke $1001 \rightarrow 2000$	-	-	-	-	-	-	-	-	-	Request	Request
	Stroke 2001 \rightarrow 4000	-	-	-	-	-	-	-	-	-	Request	Request
L	Extra Closed Height for Clevis	20	20	25	25	45	45	40	50	65	Request	Request
N	Extra Closed Height for Fork	19	23	49	63	102	135	Request	Request	Request	Request	Request
Р	Extra Closed Height for Rod End	37	40	60	72	98	122	Request	Request	Request	Request	Request

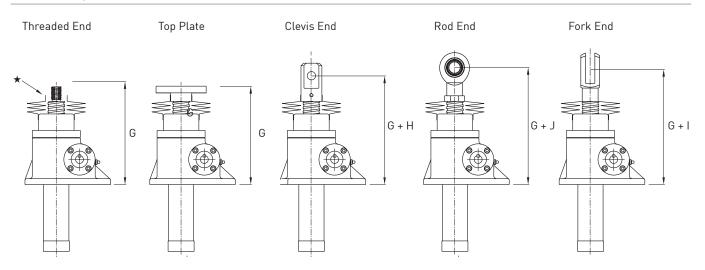
Features


- Protects the screw from dust and dirt
- Guards against moisture and corrosive contaminants
- Helps maintain the proper lubrication
- Boots are made of P.V.C. coated nylon with sewn construction. Other materials are available for applications involving high temperatures, highly corrosive atmospheres and other special conditions.

Boot Dimensions

Model	А	В	С	D	E
EBT0010	30	75	114	12	12
EBT0025	40	66	120	15	15
EBT0050	50	85	140	15	15
EBT0100	65	100	150	15	15
EBT0200	75	105	165	20	20

Model	А	В	С	D	Е					
EBT0300	110	150	180	20	20					
EBT0500		Available on Request								

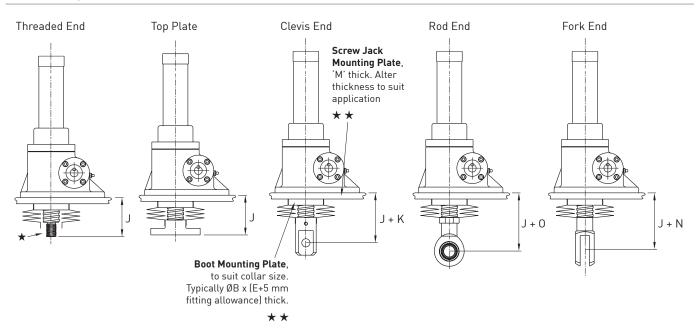

	Model	EBT0010	EBT0025	EBT0050	EBT0100	EBT0200	EBT0300
	Stroke $0 \rightarrow 300$	16	20	20	20	20	20
	Stroke $301 \rightarrow 600$	32	30	30	30	30	30
	Stroke $601 \rightarrow 900$	-	-	45	-	-	-
-	Stroke $601 \rightarrow 1050$	56	50	-	50	50	50
	Stroke 901 \rightarrow 1050	-	-	50	-	-	-
	Stroke 1051 → 1500	80	70	70	70	70	70

Note

- 1. F = Bellows boot minimum closed thickness
- 2. = Not applicable consult Power Jacks Ltd
- 3. † = Control tapes fitted (approximately 20 mm increase to outer diameter).
- 4. Supplied complete with a set of corrosion-resistant 'jubilee' clips (2) suitable for fitting over collar diameters.
- 5. For horizontal installation exceeding 450 mm of travel, internal boot guides are recommended.
- 6. Customers with threaded end screw jacks must provide a fixing for the unattached collar (\star) .
- 7. Bellows boots for rotating screw jacks consult Power Jacks Ltd.
- 8. For other sizes, strokes and materials please contact Power Jacks Ltd.
- 9. All dimensions in millimetres unless otherwise stated.
- 10. Dimensions subject to change without notice.
- 11. Screw Jack mounting plate and bellows boot mounting plate are usually all part of the customers superstructure (* *). For other options consult Power Jacks.

32 Upright Ball Screw Jack Bellows Boots

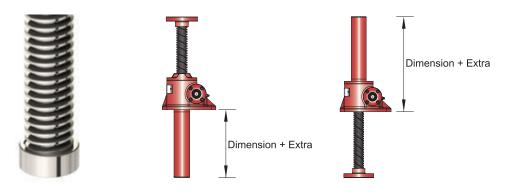
Closed Heights



Closed Height for all Upright Metric Ball Screw Jacks

	Model	EBT0010	EBT	0025	EBT	0050	EBT	0100	EBT	0200	EBT0300
	Lead Option	1	1	2	1	2	1	2	1	1	1
	Stroke $0 \rightarrow 300$	166	180	200	230	270	255	285	348	396	470
	Stroke $301 \rightarrow 600$	182	190	210	240	280	265	295	358	406	480
G	Stroke $601 \rightarrow 900$	-	-	-	255	295	-	-	-	-	-
	Stroke $601 \rightarrow 1050$	206	210	230	-	-	285	315	378	426	500
	Stroke 901 \rightarrow 1050	-	-	-	260	300	-	-	-	-	-
	Stroke $1051 \rightarrow 1500$	230	230	250	280	320	305	335	378	446	520
н	Extra Closed Height for Clevis	20	25	25	25	25	45	45	45	45	40
I	Extra Closed Height for Fork	23	49	49	63	63	82	82	135	135	Request
J	Extra Closed Height for Rod End	43	60	60	72	72	98	98	122	122	Request

Inverted Ball Screw Jack Bellows Boots 133


Closed Heights

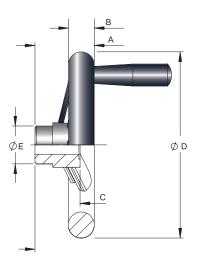
Closed Height for all Inverted Metric Ball Screw Jacks

	Model	EBT0010	EBT	0025	EBT	0050	EBT	0100	EBT	0200	EBT0300
	Lead Option	1	1	2	1	2	1	2	1	2	1
М	Mounting Plate	10	15	15	15	15	20	20	20	20	30
	Stroke $0 \rightarrow 300$	61	100	100	105	105	120	120	140	140	135
	Stroke $301 \rightarrow 600$	77	110	110	115	115	130	130	150	150	145
G	Stroke $601 \rightarrow 900$	-	-	-	130	130	-	-	-	-	-
	Stroke $601 \rightarrow 1050$	101	130	130	-	-	150	150	170	170	165
	Stroke 901 \rightarrow 1050	-	-	-	135	135	-	-	-	-	-
	Stroke $1051 \rightarrow 1500$				155	155	170	170	190	190	185
к	Extra Closed Height for Clevis	20	25	25	25	25	45	45	45	45	40
Ν	Extra Closed Height for Fork	23	49	49	63	63	82	82	135	135	Request
0	Extra Closed Height for Rod End	43	60	60	72	72	98	98	122	122	Request

Stop Nut

Machine Screw Jack

Model	Extra	(mm)
Model	Upright	Inverted
EMT0005	16	11
EMT0010	15	50
EMT0025	20	20
EMT0050	40	40
EMT0100	42	37
EMT0200	41	31
EMT0300	55	35
EMT0500	47	47
EMT1000	72	92
EMT1500	160	210
EMT2000	9	84


Ball Screw Jack

Madal	Extra	(mm)
Model	Upright	Inverted
EBT0010	On Re	equest
EBT0025	30	30
EBT0050	57	57
EBT0100	60	60
EBT0200	56	56
EBT0300	On Re	equest
EBT0500	On Re	equest

Note

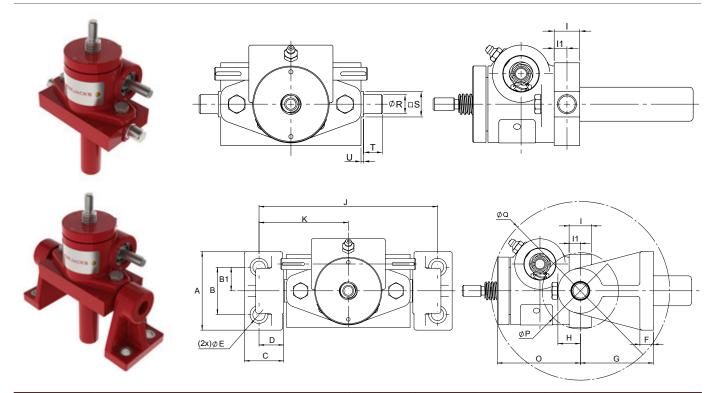
These are full power stop nuts. They should only be used as an emergency stop safety feature.

Hand Wheels

Model	А	В	С	D	E	H7 Bore
HW 005	40	14	36	98	24	Ø10
HW 010	50	22	38	157	32	Ø14
HW 025	56	24	43	198	40	Ø16
HW 050	56	24	43	198	40	Ø19
HW 100	66	30	44	247	49	Ø25
HW 200	78	32	56	288	58	Ø28
HW 300	108	40	77	375	58	Ø35
HW 500	108	40	77	375	58	Ø40

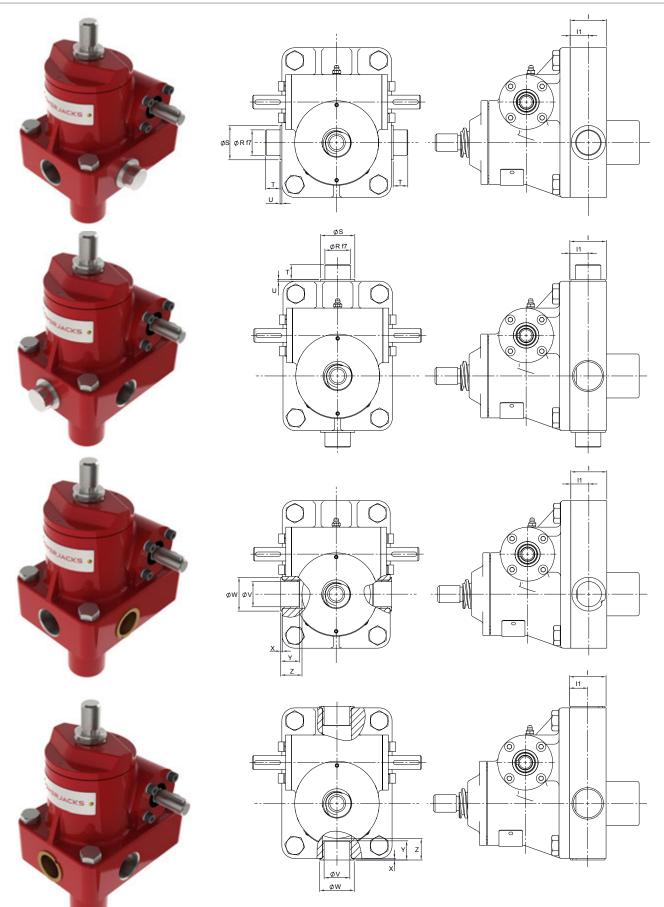
Notes:

- 1. Material: Polished aluminium casting and rotating handle
- 2. Bored and keyed to BS4235 Part 1
- 3. All dimensions in millimetres unless otherwise stated
- 4. Other types of hand wheels are available on request. Consult Power Jacks.

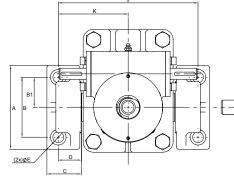

Base mounted trunnions are an ideal bolt-on accessory for a screw jack to add a pivot point to the gearbox of the screw jack. These base mounted trunnions can be used for both translating and rotating screw jacks with any lifting screw type.

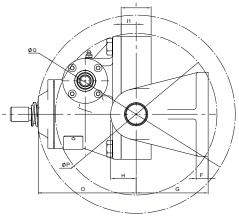
Available in both male or female designs with the option to add standard trunnion feet. Most designs offer trunnions in 2 mounting positions.

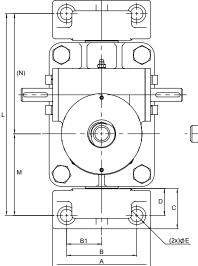
If you need trunnions fitted at another position on a screw jack then please contact us as we can provide customised trunnion mounts to suit your exact applications needs

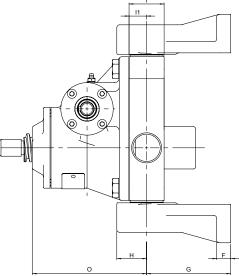


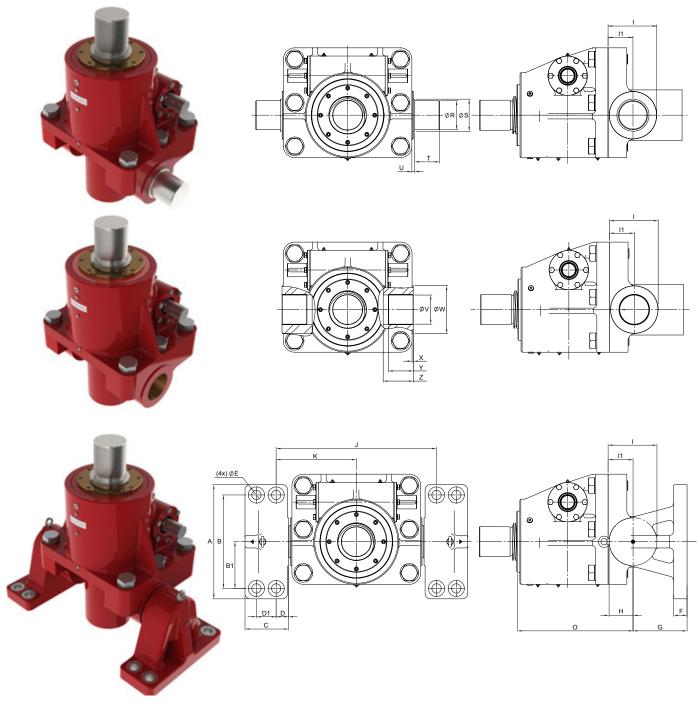
5kN and 10kN Trunnion Mounts


Capacity	А	В	B1	С	D	ØE			Н		- 11		K	0	Р	Q	ØR (h6)			U
5kN	70	42	21	35	22	11	12	65	20	20	10	159	79.5	74	68	160	15	20	15	2
10kN	70	42	21	35	22	11	12	65	20	25	12.5	181	90.5	103	84	209	20	24	20	2.5


25kN to 500kN Trunnion Mounts


25kN to 500kN Trunnion Mounts



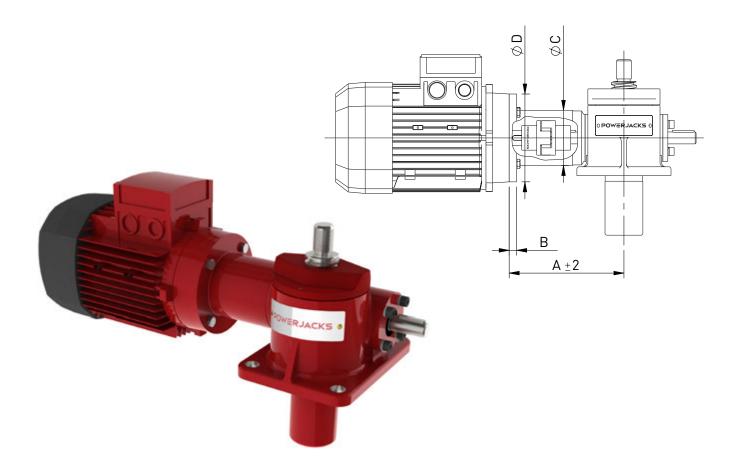


Capacity	А	В	B1	С	D	ØE	F	G	Н	I	11	J	К	L
25kN	100	70	35	40	26	13.5	14	85	30	36	18	171	85.5	226
50kN	140	100	50	55	35.5	18	20	120	42.5	50	25	233	116.5	288
100kN	170	120	60	70	43.5	22	25	130	47.5	60	30	292	146	327
200kN	220	150	75	90	61	33	25	170	59	85	42.5	344	172	409
300kN	280	190	95	120	80	39	35	180	60	100	45	434	217	539
500kN	360	250	125	155	100	51	40	200	70	120	55	514	257	749

Capacity	М	N	0	Р	Q	ØR (f7)	S	Т	U	V	W	Х	Y	Z
25kN	95.5	130.5	121.5	208	248	25	35	20	2.5	25	35	1.5	16.5	26
50kN	116.5	171.5	163	270	332	35	47	20	2.5	35	47	2	26	39
100kN	126	201	177	312	361	45	58	35	5	45	74	2	32	40
200kN	172	237	238	361	500	60	75	45	5	60	78	2	42	45
300kN	227	312	280	473	578	70	85	70	6	70	90	3	53	58
500kN	332	417	330	643	681	80	95	70	6	80	110	2	62	62

1000kN to 2000kN Trunnion Mounts

Note: Trunnion feet for 300kN and 500kN models are available on request


Capacity	А	В	B1	С	D	ØE			Н		- 11		K	L
1000kN	550	450	225	210	60	95	45	50	240	92.5	212.5	120	772	386
1500kN	550	450	225	210	60	95	45	65	260	115	235	120	772	386
2000kN	640	530	265	235	65	110	52	70	265	135	275	140	976	488

Capacity	М	Ν	0	Р	Q	ØR (f7)	S	Т	U	Ø٧	W	Х	Y	Z
1000kN	N/A	N/A	525	725	1074	110	125	115	14	110	185	6	115	145
1500kN	N/A	N/A	560	758	1162	140	155	120	14	140	230	6	120	145
2000kN	N/A	N/A	626	1004	1295	160	180	145	11	160	270	3	145	148

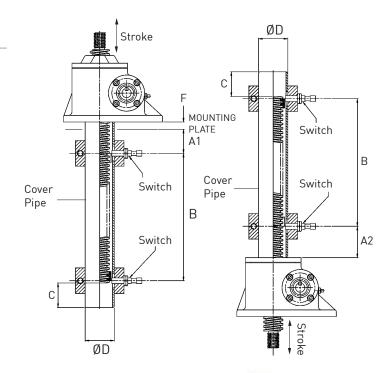
- Standard adapters for 25 kN 200 kN metric machine screw and ball screw jacks
- Designed for standard IEC frame sizes
- Allows direct motor coupling on either side of the screw jack input shaft
- Complete with drive coupling and mounting hardware

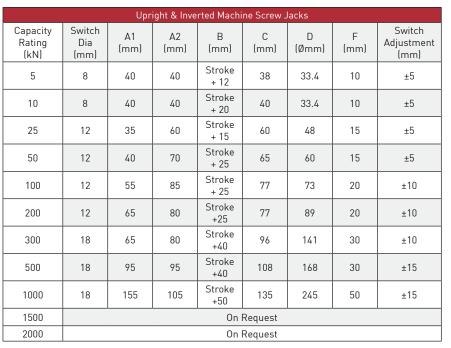
Note

• When direct coupling a motor to a screw jack, it is necessary to match motor power to screw jack load so the motor does not exceed the maximum power for the screw jack gear set.

Motor Adapters		Capacity (kN)															
		25				50			100			200					
Frame Size	Motor Mounting	А	В	ØC	ØD	А	В	ØC	ØD	А	В	ØC	ØD	А	В	ØC	ØD
71	B14 C105	142.5	10	71	105	-	-	-	-	-	-	-	-	-	-	-	-
80	B14 C120	146.5	12	81	120	171	12	86	120	-	-	-	-	-	-	-	-
90	B14 C140	157.5	12	81	140	183	12	88	140	208	12	98	140	218	12	125	140
100	B14 C160	168	12	81	160	193	12	88	160	218	12	98	160	228	12	125	160
112	B14 C190	168	12	81	160	193	12	88	160	218	12	98	160	228	12	125	160
132	B14 C200	-	-	-	-	218	14	95	200	240	14	98	200	250	14	125	200

Notes:


- 1. Motor Adapters for IEC Frames with B5 Flange mounts available on request.
- 2. Motor Adapters for screw jacks of capacities 300kN and above are available on request.
- 3. Adapters for geared motors are available on request for all types of geared motor or gear head.
- 4. Motor Adapters for Servo Motors available on request.
- 5. Motor Adapters for NEMA Frame motors are available on request.
- 6. All dimensions in millimetres unless otherwise stated.
- 7. Dimensions subject to change without notice.

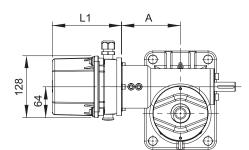

40 Limit Switches on Cover Pipe

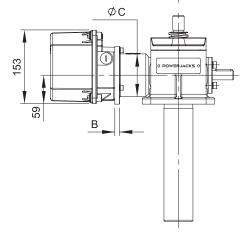
POWERJACKS

End of Travel Proximity Sensors Sensor Kit

- Inductive Proximity Sensors as standard, others available on request.
- No contact so no wearing parts.
- 2 wire sensor for either Normally Closed (NC) or Normally Open (NO) switching.
- Sensor has rugged one-piece metal housing.
- Optical setting aid with 2 LED colour settings:- Red LED indicates just in sensing range. Yellow LED only indicates within 80% safe sensing range.
- M12 plug in connection for fast change-ability.
- M12 sockets available straight or angled with 5-m cable (other cable lengths available on request).
- Full 360° visibility for switching with 4 yellow LED's at 90° offset.
- Sensor kit includes sensor, mounting ring, target ring and modification to screw jacks cover pipe.

Note


1. All dimensions in mm unless otherwise stated.


End of Travel Electro-Mechanical Switches

The screw jacks can be fitted with electro-mechanical limit switches in a similar design. For dimensions please consult Power Jacks Ltd.

Rotary limit switches can be used as end of travel limit switches, with the option of intermediate switches as well. These units are mounted onto a screw jacks free worm shaft and offer an alternative where bottom pipe mounted limit switches are not possible e.g. rotating screw jacks. Up to 8 limit switches can be accommodated in one enclosure (IP66). Operating temperature -40°C to +80°C.

Rotary Limit Switch - RLS

More RLS-51 rotary limit switch details in System Components section of design guide

Screw Jack Capacity (kN)										
		2	5		50					
Adapter Mounting	Std. Part	А	В	ØC	Std. Part	А	В	ØC		
B5	×	-	-	-	×	-	-	-		
B14	~	117	10	70	~	133	10	89		

Screw Jack Capacity (kN)										
		10	00		200					
Adapter Mounting	Std. Part	А	В	ØC	Std. Part	А	В	ØC		
B5	\checkmark	150	13	98	\checkmark	174	13	125		
B14	x	-	-	-	×	-	-	-		

The mounting kit includes the flexible coupling and drive adapter.

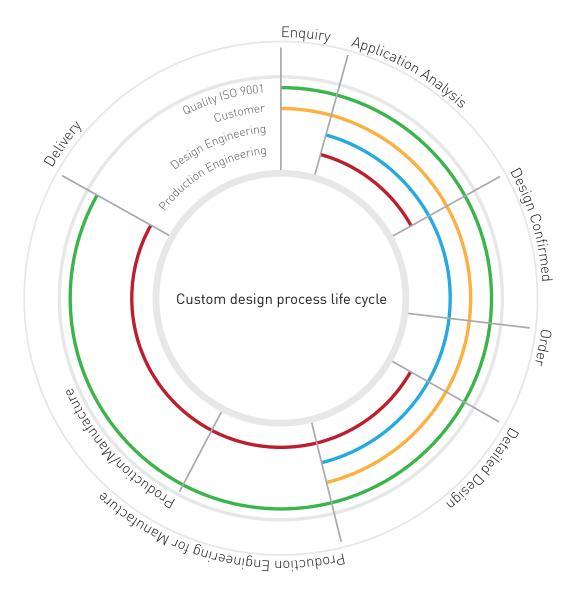
		Usable revs.		1 rev. of the drive shaft - corresp. to an ang. motion of cam disc =°	Change - over contact reset rev. at driving shaft	Max drive speed (RPM)	Min drive shaft speed (only for change - over	L1 (mm)			
Gear Size	Usable revs. selected	theoretical with 15° cam discs	Gear Ratio					Limit Switches			
							contact)	2			8
	4.1	4.16	4.285	84	0.00714	1000	0.67		132	157	157
1	6.5	6.88	7.083	50.8	0.0118	1200	1.1	132			
	11	11.23	11.56	31.14	0.0193	1500	1.8				
	17.5	17.84	18.361	19.6	0.0306	1800	2.9	132	132	157	182
2	29	29.5	30.35	11.86	0.0505	1800	4.7				
	48	48.13	49.538	7.27	0.0825	1800	7.7				
	75	76.45	78.678	4.57	0.131	1800	12.2	132	132	157	182
3	125	126.39	130.054	2.77	0.2166	1800	20.2				
	205	206.26	212.272	1.69	0.3536	1800	33				
	323	327.6	337.135	1.06	0.5616	1800	52			182	207
4	540	541.5	557.284	0.65	0.9284	1800	87	132	157		
	880	883.8	909.59	0.4	1.515	1800	141				
	1384	1403.7	1444.62	0.25	2.406	1800	224		157	182	207
5	2288	2320.2	2387.96	0.15	3.978	1800	371	132			
	3735	3787.1	3897.58	0.09	6.493	1800	606				
	5900	6014.77	6190.204	0.06	10.313	1800	*		157	182	207
6	9800	9942.2	10232.407	0.04	17.047	1800	*	157			
	16000	16227.6	16701.17	0.02	27.824	1800	*				

Note

1. More than 8 contacts on request.

2. Dimensions with more than 8 contacts and with special executions, eg. potentiometer, on request.

3. RLS-51 B5 Flange thickness = 4mm.


4. Options available include Anti-condensation heaters, potentiometer, pulse transmitter, encoder, aluminium housing and VBG-70 STAGE technology.

5. Mounting kits available for all screw jacks. For those not listed, consult Power Jacks.

7

Special Designs

OUR SCREW JACK DESIGNS ARE FULLY CUSTOMISABLE BY OUR ENGINEERING TEAM SO YOUR APPLICATION CAN BE THE BEST.

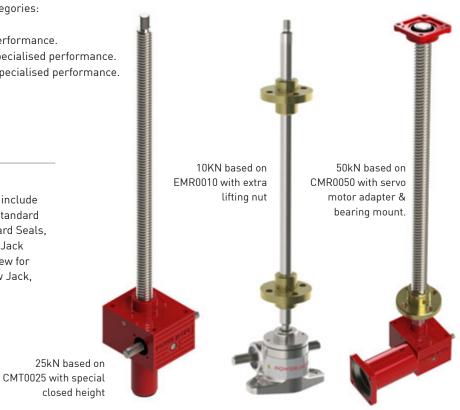
Customised Products

For Power Jacks, every order is different.

We're ready every time to assess the precise requirements of the customer and formulate the right solution.

Off-the-shelf solutions are the norm for many engineering companies. And while they're certainly options for our customers, that's only the case if they're precisely the right options.

We pride ourselves on our adaptability – on our readiness to customise basic models, or even to start from scratch, so that we're providing products that offer optimum performance.


It's a customising service across our entire range of products that means customers get exactly what they need.

Special screw jack design are divided into 4 categories:

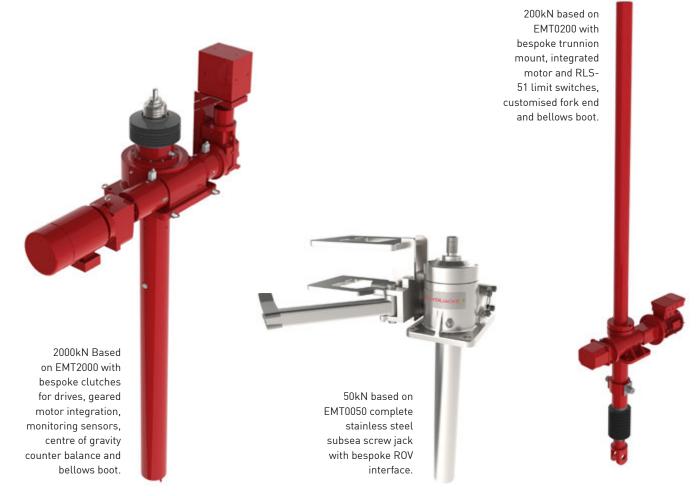
- E-Class simple customisation 1.
- 2. SE-Class - enhanced design for specific performance.
- 3 HSE-Class - highly enhanced design for specialised performance.
- 4. XSD - extreme special designs for highly specialised performance.

E Class Special Design

Enhances screw jack design by making simple customisation and feature additions. Examples include (but not limited to): Non-Standard Paint, Non-Standard Plating, Non-Standard Lubrication, Non-Standard Seals, Non-Standard Motor Adapter, Plating of Screw Jack Gearbox Housing, 3-Start Thread on Lifting Screw for increased lead, Special Closed Height for Screw Jack, Extended Worm Shaft, etc..

SE Class Special Design

Special Enhancements to screw jack designs where new parts and/or accessories are used to deliver the best performance for the application. Examples include (but not limited to): Integration of Brake to Screw Jack Body, Bespoke End Fitting on Lifting Screw, Lifting Nut with Square Flange, Non-Standard Worm Shaft Design, Cover Pipes on Rotating Screw Jack, etc.



100kN based on EMT0100 with bespoke clevis end with spherical bearing, trunnions, geared motor and bellows boot.

25kN based on EMR0025 with ram covering for lifting screw, rear clevis end, brake motor and RLS-51 limit switch.

HSE Class Special Design

High Specification Enhancements to screw jack design where significant changes are made to main screw jack design and/or new and/or specialised accessories are integrated. Examples include (but not limited to): Bespoke Clutch on Worm Shaft, Coil Spring Load Limiter, Centre of Gravity Balanced Designs, Bespoke Trunnion Mounts, Telescopic Lifting Screw, Lifting Screw with Left & Right Threaded Sections, Increased Base Thickness for Screw Jack Gearbox Housing etc..

XSD Class Special Design

eXtreme Special Design for screw jacks where a modification of our existing range is not practical for engineering and/or commercial goals. The way to get the best performance for the application is to design and manufacture a unique product using our state of the art screw jack technology. Examples include (but not limited to): Seismic Rated 3500kN Nuclear Screw Jacks, Large Valve Control Mechanisms, 200degC rated Screw Jacks, Ultra Light Weight Screw Jacks for mobile applications, Solar Tracking Screw Jacks

3500kN Seismic rated Nuclear Screw Jacks complete special design for translating and rotating machine screw jacks.

U-Series Underwater / Subsea Screw Jack Overview

The U-Series subsea screw jacks are a proven and reliable technology for subsea lifting, positioning and actuation solutions down to a deph of 3000m. They are used in a wide variety of underwater applications in the oil & gas sector. Each submersible variant is tailored exactly to the customer application.

Rotating Screw, Upright

Rotating Screw, Inverted

- Proven depth ratings up to 3000m subsea as standard (deeper on request)
- Pressure compensated or flooded designs available
- Capacities up to 2000 kN (200Te) as standard
- Capacities up to 35000 kN (3500Te) on request
- Machine Screw Jacks
- Translating and rotating screw configurations
- Full stainless steel Screw Jacks
- Self-locking (the products only use power when moving)
- Anti-rotation mechanism for unconstrained loads
- Anti-backlash mechanism for axial positioning
- Option for reinforced shaft design for up to 300% higher torque transmission

U-Series Screw Jacks can be connected together in jacking systems so that multiple units can be operated and controlled together.

For more details request the U-Series brochure from Power Jacks or download a copy from www.powerjacks.com

Reinforced sealing

Translating Screw, Upright

- Dual nut (safety nut) fail safe load-holding option
- Shock load rated units
- Full range of anti-corrosion options
- ROV drive interfaces
- Low (-65°C) to High (+250°C) temperature solutions available
- Vibration resistant designs
- Full range of feedback devices for speed, position, rotation, wear and load monitoring control

Translating Screw, Inverted

• Special custom designs available to meet your exact requiren

U-Series Subsea Screw Jack Performance

Full Stainless Steel Construction

Model		UM-0025	UM-0050	UM-0100	UM-0200	UM-0300	UM-0500	UM-1000	UM-1500	UM-2000
Capacity (kN)		25	50	100	200	300	500	1000	1500	2000
Lifting Screw ^{note1}	Diameter X Pitch (mm)	30 x 6	40 x 9	55 x 12	65 x 12	95 x 16	120 x 16	160 x 20		
Gear Ratios	Option 1	6:1	6:1	8:1	8:1	10²/3:1	10²/3:1	12:1]	
	Option 2	24:1	24:1	24:1	24:1	32:1	32:1	36:1		
Turn of worm for raise of	Option 1	1 for 1mm	1 for 1.5mm	3 for 5mm						
lifting screw	Option 2	4 for 1mm	4 for 1.5mm	2 for 1mm	2 for 1mm	2 for 1mm	2 for 1mm	9 for 5mm		
Maximum Input Power	Option 1	1.5	3	3.75	3.75	6	11.25	18.5		
(kW)	Option 2	0.375	0.55	1.125	1.125	1.9	4.5	8.25]	
Start up Torque at full load	Option 1	19.8	56	115.9	263.8	480	900	2025]	
(Nm) note2	Option 2	8.7	25.5	60.5	137	284	504	1119]	
Weight (kg) starks 150mm	UMT	8.45	14.9	24.3	42.4	92.4	183.7	459.1	-	est
Weight (kg) – stroke = 150mm	UMR	8.85	16.54	28.8	49.58	113.78	224	560.4	1	edn
	UMT	0.21	0.32	0.58	0.84	1.55	2.48	4.11		
Weight (kg) per extra 25mm	UMR	0.11	0.19	0.36	0.52	1.13	1.94	3.38	-	Available on Kequest
	Gear Ratio	6:1	6:1	8:1	8:1	102/3:1	10²/3:1	12:1	-	llan
Option 1	Screw jack Static Efficiency	0.201	0.213	0.206	0.181	0.149	0.132	0.131		AVE
Ŏ	Screw jack Dynamic Efficiency	0.264	0.281	0.272	0.242	0.205	0.181	0.178		
	Gear Ratio	24:1	24:1	24:1	24:1	32:1	32:1	36:1	-	
Option 2	Screw jack Static Efficiency	0.115	0.117	0.132	0.116	0.084	0.079	0.079		
ŏ	Screw jack Dynamic Efficiency	0.167	0.172	0.190	0.169	0.128	0.120	0.123		
Standard Depth Rating	m	3000	3000	3000	3000	3000	3000	3000	30	00
Flooded Design Ava	ilable	Y	Y	Y	Y	Y	Y	Y	,	Y
Pressure Compensated Des	ign Available	Y	Y	Y	Y	Y	Y	Y	,	Y

Notes:

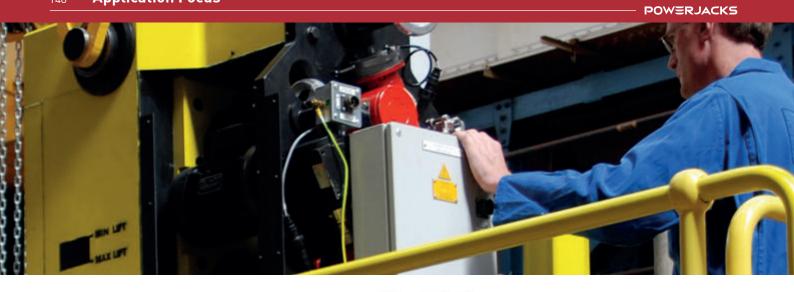
1. All metric machine screws have a trapezoidal thread form, single start as standard (diameter x pitch)

2. For loads of 25% to 100% of Screw Jack capacity, torque requirements are approximately proportional to the load

3. Efficiency values for standard grease lubricated worm gear box and lifting screw

4. For performance of anti-backlash and anti-rotation (keyed) models, consult our Power Jacks experts

 ${\it Standard\ construction:}$


5. Stainless steel Screw Jack rated for rated capacity in tension or compression for static or dynamic movement

6. Lubrication = EP2 Grease

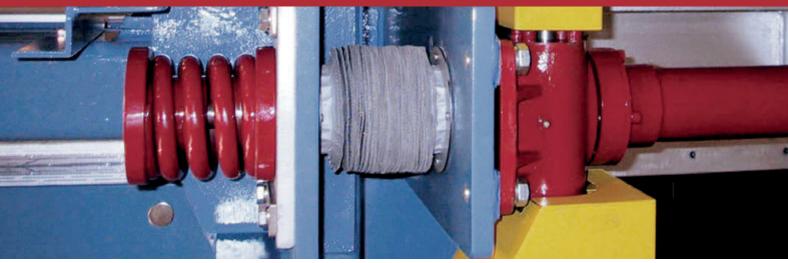
7. Paint finish = Power Jacks Standard Subsea Yellow (other colours available on request)

8. Other materials, plating and paint specifications are available to suit all applications and budgets

Please supply depth rating required with enquiry

GRAPHITE HANDLING MACHINE

The Graphite Handling system was developed to retrieve graphite components, capping pieces and thermocouples from inside nuclear reactors, crush them for size reduction and deposit them into shielded flasks. The machine houses 4 types of flask.


The Crusher Jaws are driven by three 50 kN E-Series Ball Screw Jacks, complete with Bevel gearbox, brake and motor, to size reduce the component. The selected Flask is raised into the docking position by two more 50kN screw jacks, driven by a single electric motor via bevel gearboxes. The size reduced component is deposited into the flask and the flask is returned to its storage position.

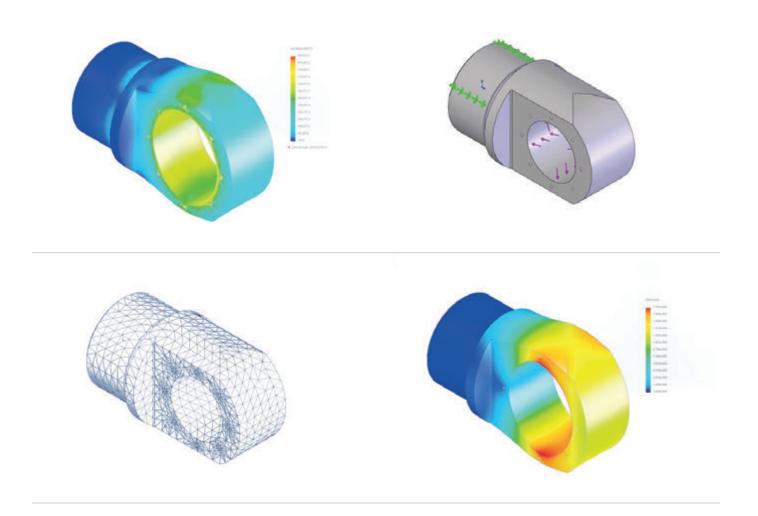
For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

Screw Jack Special Designs 7

POWERJACKS

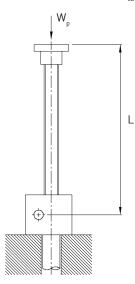
COIL SPRING LOAD LIMITER

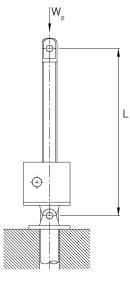
When an industrial machine needs to move a cover or lid onto a dead stop or sealing face it must do so precisely and positively, with contact on all dead stops or over the complete sealing face.

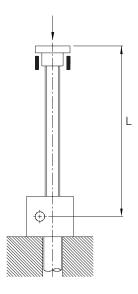

To push the cover into position precisely Power Jacks designed a special coil spring load limiter for the end of the jacks lifting screw.

For more application examples see the 'Power at Work' brochure or www.powerjacks.com.

ENGINEERING GUIDE

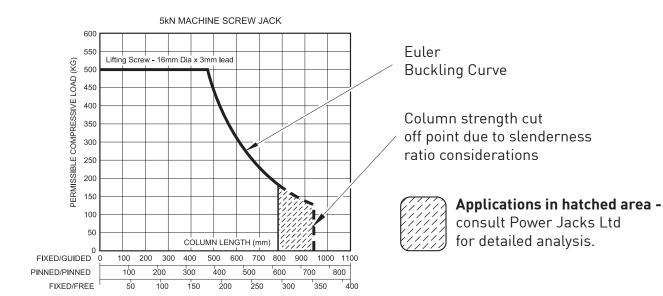

USEFUL PERFORMANCE & OPERATIONAL DETAIL FOR SCREW JACKS

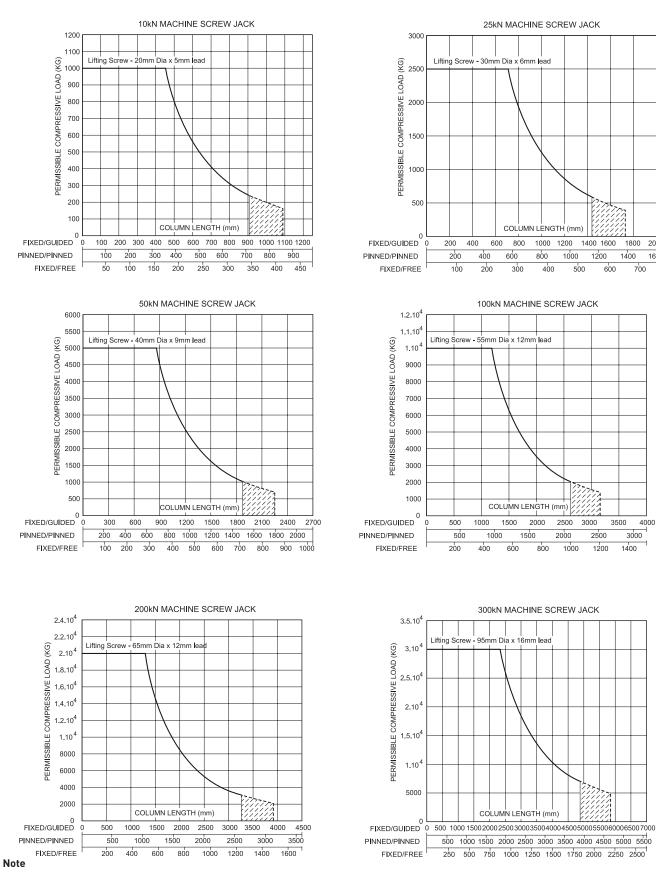



Important Notes

- 1. All charts are rated for industrial cargo with a safety factor of 3.5.
- For human cargo a safety factor of 5 is recommended. To alter the permissible compressive load (WP) for human cargo multiply the load selected from the chart by 0.7 e.g. W_{PHC} = W_P *0.7.

Column Length Correction Factors, F_{cb}





Fixed/Free

Pinned/Pinned

Fixed/Guided

- 1. Column end constraints based on A.I.S.C. recommended values
- 2. All screw jack column strength charts show a Euler buckling curve and three scales for the appropriator end condition for the application under analysis.

1800 2000

700

1600

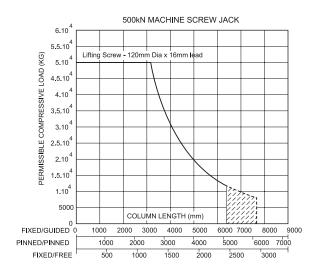
1400

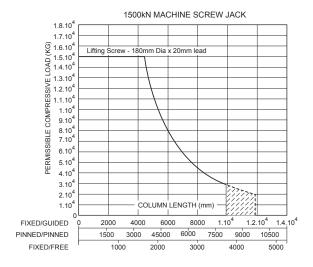
600

3500

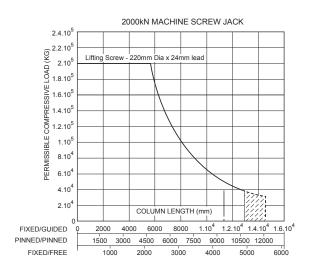
2500

1200

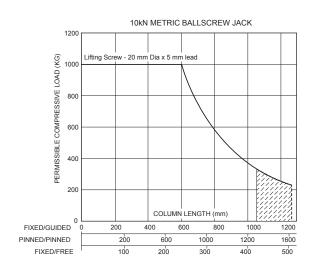

4000


3000

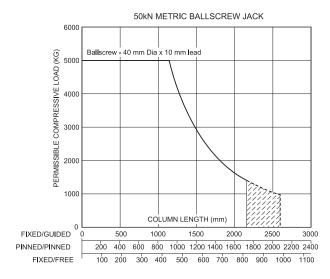
1400


154 Machine Screw Jack Column Strength Charts

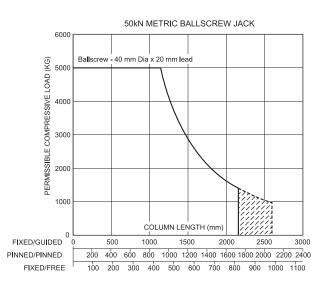
POWERJACKS

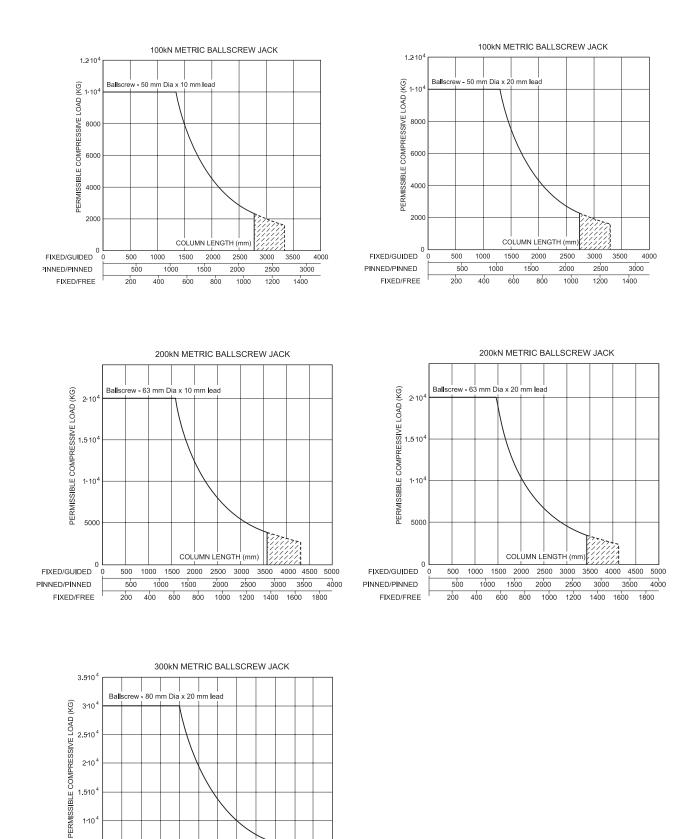







Note


- 1. Column end constraints based on A.I.S.C. recommended values
- 2. All screw jack column strength charts show a Euler buckling curve and three scales for the appropriator end condition for the application under analysis.



5000

500

500

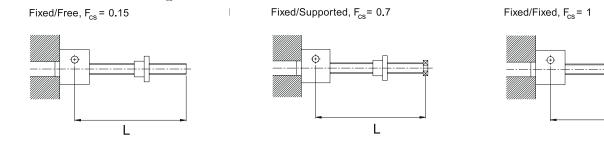
FIXED/FREE

PINNED/PINNED

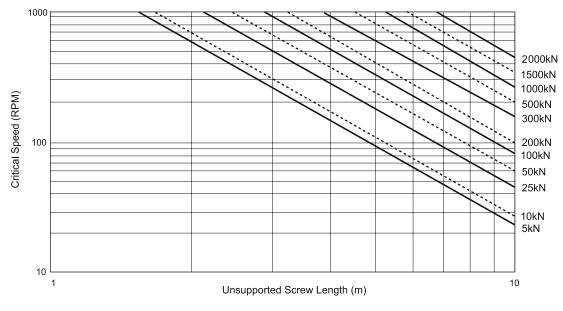
COLUMN LENGTH (mm)

1000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000


1000 1500 2000 2500 3000 3500 4000 4500

1500


2000

L

Critical Screw Speed Factors, F_{cs}

Machine Screw Critical Screw Speed (Shaft Whirling)

Based on both ends fixed and 80% of the critical speed.

Ball Screw Critical Screw Speed (Shaft Whirling)

Based on both ends fixed and 80% of the critical speed.

158 Screw Jack Key Torque

The key torque (restraining torque) is caused by the tendency of the lifting screw to rotate. It is a function of the screw lead, screw efficiency and the load. It is not affected by the screw jack unit gear ratio.

Note

The values below are given at rated load. For a smaller load reduce the key torque in direct proportion.

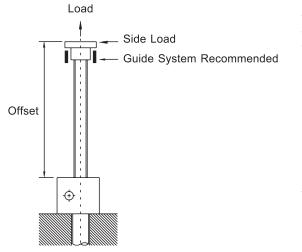
Machine Screw Jacks

Capacity (kN)	Screw Diam (mm)	Lead (mm)	Key Torque (Nm)
5	16	0.003	8
5	16	0.006	11
10	20	0.005	22
10	20	0.010	30
25	30	0.006	76
25	30	0.012	102
50	40	0.009	210
50	40	0.018	290
100	55	0.012	575
100	55	0.024	780
200	65	0.012	1300
200	65	0.024	1705
300	95	0.016	2805
300	95	0.032	3610
500	120	0.016	5645
500	120	0.032	6975
1000	160	0.020	14890
1000	160	0.040	18220
1500	180	0.020	24610
2000	220	0.024	39995

Ball Screw Jacks

Capacity (kN)	Screw Diam (mm)	Lead (mm)	Key Torque (Nm)
10	20	0.005	9
10	-	-	-
25	25	0.005	23
25	25	0.01	43
50	40	0.01	88
50	40	0.02	167
100	50	0.01	181
100	50	0.02	340
200	63	0.01	370
200	63	0.02	690
300	80	0.02	1030
500		On Request	

Maximum Jack Side Load Ratings with Full Jack Rated Load in Tension


Machine Screw Jacks

		Metr	ric Machine S	crew Jack					
Capacity (kN)	5	10	25	50	100	200	300	500	1000
Max. Side Load 300mm Offset (N)	100	150	540	1130	2900	3350	17500	37800	83400

Ball Screw Jacks

Ball Screw Jack											
Capacity (kN)	10	25	25	50	50	100	100	200	200	300	500
Ball Screw Lead (mm)	5	5	10	10	20	10	20	10	20	20	*
Max. Side Load 300mm Offset (N)	105	195	195	980	980	1570	1570	2060	2060	4340	*

*Consult Power Jacks.

To calculate maximum side load for different raises for screw jacks in tension under full rated load use the following formula to modify the above tabulated values.

Permissable Max. Side Load = for Actual Offset Max Side Load Rating Tabulated x Stated Offset

Actual Offset

Note

The correct units must be used

Important Notes

1. These figures are for Screw Jacks in tension only.

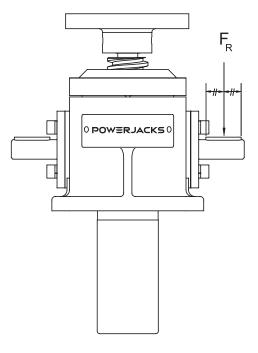
- 2. The figures given above are permissible side load ratings, however, we recommend that all side loads be carried by guides in your arrangement and not by the screw and nut.
- 3. Life of the lifting screw and nut will be adversely affected the more side load they see.
- 4. These figures are based on acceptable stresses in the lifting screw and not on lifting screw deflection.
- 5. For maximum side load ratings for screw jacks in compression consult Power Jacks Ltd.
- 6. For precise calculations for your application consult Power Jacks Ltd.

Radial Loads on Screw Jack Worm Shaft

For applications where a screw jack is belt/chain driven, a calculation must be made to determine the radial force (F_{R}) and compared to the allowable radial load exerted on the worm shaft, that must not exceed those tabulated below. The values below are maximum values for the screw jacks at rated load regardless of worm speed or load direction and the radial load applied midway along the key of the worm shaft. For all applications the sprocket, gear etc. Should be positioned as close as possible to the screw jack housing in order to reduce bearing loads and shaft stresses and to prolong life.

Where

F_R = Radial Load (N)


- T = Torque applied to the screw jacks input shaft (Nm)
- **K** = Factor from table below
- **D** = PCD in mm of gear, sprocket

Transmission Element	Factor K
Chain sprocket	1
Gears (spur or helical pinion)	1.25
V-Belt pulley	1.5
Flatbelt pulley	2.0

	Bal	l Screw Jack		
Capacity (kN)	25	50	100	200
Radial Load (N)	440	1100	1200	1600

			Μ	lachine Screw .	lack				
Capacity (kN)	5	10	25	50	100	200	300	500	1000
Radial Load (N)	180	325	380	740	1000	1600	2170	2190	2220

Machine Screw Jacks

Component	Normal Backlash
Lifting Screw and Nut	$0.12mm \rightarrow 0.2mm (0.005" \rightarrow 0.008")$
Load Bearings	$0.00 \text{mm} \rightarrow 0.03 \text{mm} (0.000" \rightarrow 0.001")$
Total	0.12mm → 0.23mm (0.005" → 0.009")

Note

- 1. The lifting screw backlash will increase during operation due to wear of threads in the nut
- 2. Axial play can be reduced by altering the load bearings preload to eliminate bearing play or by specifying a screw jack with the Anti-Backlash feature
- 3. For exact backlash ratings for an individual unit consult Power Jacks.

Anti-Backlash Option

Machine screw jacks fitted with the anti-backlash feature can be adjusted for screw thread and bearing clearances to a minimum of 0.025 mm (0.001"). Some clearances must be maintained to keep torque requirements within reason and to provide adequate space for a lubrication film to form.

Ball Screw Jacks

Component	Normal Backlash
Ball Track and Nut	$0.05 \mathrm{mm} ightarrow 0.15 \mathrm{mm}$ ($0.002" ightarrow 0.006"$)
Load Bearings	0.00 mm $\rightarrow 0.03$ mm ($0.000" \rightarrow 0.003"$)
Total	0.05 mm $\rightarrow 0.18$ mm ($0.0002'' \rightarrow 0.007''$)

Note

- 1. For exact backlash ratings for an individual unit consult Power Jacks.
- 2. Ball nuts can be supplied with zero backlash or with adjustable backlash via a special twin nut assembly (twin nut assembly for rotating screw units only). Consult Power Jacks for details.
- 3. Altering the load bearings preload to eliminate bearing play can reduce axial play.
- 4. There is no Anti-Backlash nut feature for the gear sets of these screw jacks.

Pitch Deviation of Lifting Screw

Lifting Screw	Pitch Deviation
Machine Screw	0.05mm → 0.25mm per 300mm
Ball Screw	0.025mm $ ightarrow$ 0.050mm per 300mm (DIN Class 5.7)

Note

- 1. Pitch deviation is cumulative and **NOT** detrimental to the operation of the Screw Jack
- 2. The Lifting screws are manufactured from material with a straightness tolerance of 0.2 mm per metre
- 3. Pitch deviation is related to the cutting machines tolerance and the material used.

162 Lateral Movement Ratings

Machine Screw Jacks

Stroke (mm)	5kN	10kN	25kN	50kN	100kN	200kN	300kN	500kN	1000kN
100	0.7	0.6	0.8	1.0	1.0	0.4	0.4	0.7	0.7
200	1.3	1.1	1.4	1.7	1.7	0.7	0.6	1.0	1.0
300	1.9	1.5	1.9	2.3	2.3	0.9	0.8	1.3	1.3
400	2.5	2.0	2.5	2.9	2.9	1.2	1.0	1.7	1.6
500	3.1	2.4	3.1	3.6	3.6	1.4	1.2	2.0	1.9
600	3.7	2.8	3.6	4.2	4.2	1.6	1.4	2.3	2.2
700	4.3	3.3	4.2	4.8	4.8	1.9	1.6	2.6	2.4
800	4.8	3.7	4.8	5.5	5.5	2.1	1.8	2.9	2.7
900	5.4	4.2	5.3	6.1	6.1	2.4	1.9	3.2	3.0
1000	6.0	4.6	5.9	6.7	6.7	2.6	2.1	3.6	3.3

Notes

1. Values quoted above are the maximum expected lateral movement for the given raise and screw jack model.

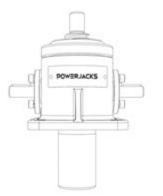
2. Does not allow for possible deflection due to side loads.

3. Lateral movements are for information only. For best results we recommend guides where possible.

4. Lateral movements will be reduced if the screw jack is fitted with secondary guides.

5. The above movements apply to machine screw jack only and not ball screw jacks. Permitting lateral movement on the ball screw jack under load will exert side thrust on the ball screw and ball nut and will be detrimental to the ball screw and nut life. Ball screw applications should be guided to ensure a minimum of lateral movement.

6. Where lateral movement is critical consult Power Jacks for exact values for the application.


Operation

How a Rotating Screw Jack Works

The rotation of the worm shaft causes the worm gear to rotate. For rotating screw jacks the lead screw is fixed to the worm gear and they rotate at the same speed. The lifting nut moves along the lead screw. As the worm gear turns, the friction forces on the screw thread act to turn the nut also. The greater the load on the screw jack unit, the greater the tendency of the nut to turn. If the nut turns with the screw, it will not raise the load. Therefore the nut needs to be fixed to a structure to prevent rotation. The restraining torque required for the structure, also known as the "lead screw key torque" can be found on the product performance tables in this catalogue or requested from Power Jacks.

How a Translating Screw Jack Works

The rotation of the worm shaft causes the worm gear to rotate. For translating screw jacks the worm gear is threaded to accommodate the lead screw thread. The lead screw translates through the gear. As the worm gear turns, the friction forces on the screw thread act to turn the screw also. The greater the load on the screw jack unit, the greater the tendency of the screw to turn. If the screw turns with the nut (worm gear), it will not raise the load. In those cases where a single unit is used, and where the load cannot be restrained from turning, it is necessary to use a screw jack with an anti-rotation mechanism (keyed screw jack). Lead screw key torque (refer to the product performance tables in this catalogue or request from Power Jacks) must be checked as excessively heavy unguided loads could break the Anti-rotation mechanism (key).

Anti-Backlash Screw Jack - When To Use

For reduced axial backlash of the lead screw in the screw jack select a model with the "Anti-Backlash" mechanism. This is typically used when the load direction changes from tension to compression and minimal axial backlash is required. This design is only available for translating screw jacks. It can be combined with Anti-Rotation mechanism as well.

Input Torque Required for a Screw Jack

The input torque for a single screw jack depends on the load, the worm gear ratio, type of screw (machine screw, ball screw or roller screw) and the pitch of the lead screw. Torque values are listed in the individual product specification charts based on capacity loads. For loads from 25% to 100% of screw jack model capacity, torque requirements are approximately proportional to the load.

Note

The input torque, as well as the efficiency and side load ratings, is the same for both translating screw and rotating screw jacks.

Maximum Input Power & Speed for a Screw Jack

The input power to the screw jacks should not exceed the power rating shown in the specifications table. Maximum input speed in rpm (revolutions per minute) to a screw jacks worm shaft should not exceed 1800 rpm for C & E-Series screw jacks.

Efficiency of a Screw Jack

Screw Jack model efficiencies are listed in the individual product specification charts.

Expected Life of a Screw Jack

The life expectancy of a screw jacks lead screw, bearings, nut and worm gear set varies considerably due to the extent of lubrication, abrasive or chemical action, overloading, excessive heat, improper maintenance, etc. For detailed life calculations, consult Power Jacks.

Screw Jack with Anti-Rotation (Keyed) Mechanism

This design is only available for translating screw jacks. If the structure/object connected to the lead screw is not prevented from rotating or the lead screw is not always in contact with the structure then a screw jack with an "Anti-Rotation" mechanism (keyed) should be used.

Standard Screw Jacks - How To Prevent The Load from Rotating

For multiple screw jack systems, fix the lead screw end fittings (e.g. top plate or clevis) to the common member being lifted by all the units. For single screw jack applications, bolt the lead screw end fitting (e.g. top plate or clevis) to the load and ensure the load is guided to prevent rotation.

A guided load is always recommended to ensure that the screw jack does not receive any side load and so guidance can be scaled suitably for the load without altering the screw jack design unnecessarily. Note that an external guidance system can provide a higher restraining "key" torque than compared to an anti-rotation mechanism in a screw jack.

Self-Locking of Screw Jacks

Screw Jacks with 24:1 or higher gear ratios are considered self-locking in most cases. Consult Power Jacks for a recommendation specific to your application.

All screw jacks with multi-start lifting screws are considered not to be self-locking.

All ball screw and roller screw jacks are considered <u>not</u> to be self-locking.

Screw Jacks considered not self-locking will require a brake or other holding device.

Shock Loads on a Screw Jack

Shock loads should be eliminated or reduced to a minimum, if they cannot be avoided, the screw jack model selected should be rated at twice the required static load.

For severe shock load applications, the load bearings can be replaced with heat-treated steel thrust rings which is an option available from Power Jacks. Note this will increase the input torque by approximately 100%.

Axial Backlash in a Screw Jack

Backlash in Standard Machine Screw Jacks

Machine screw jacks have backlash due not only to normal manufacturing tolerances, but to the fact that there must be some clearances to prevent binding and galling when the screw jack unit is under load. Usually, the axial backlash is not a problem unless the load on the screw jack unit changes between compression and tension. If a problem does exist, a unit with the anti-backlash feature should be considered.

Screw Jacks with the Anti-Backlash Device

The anti-backlash device reduces the axial backlash between the lead screw and nut assembly to a regulated minimum. As the backlash will increase as the lead screw thread on the gear wears the anti-backlash device can be adjusted to remove this normal condition.

How the Anti-Backlash Device Works

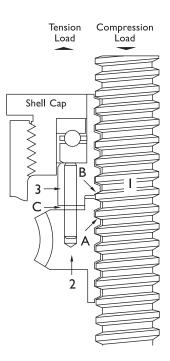
When the screw (1) is under a compression load, the bottom of its thread surfaces are supported by the top thread surfaces of the worm gear (2) at point (A). The antibacklash nut (3), being pinned to the worm gear and floating on these pins and being adjusted downward by the shell cap, forces its bottom thread surfaces against the upper thread surfaces of the lifting screw at point (B). Thus, backlash between worm gear threads is reduced to a regulated minimum.

When wear occurs in the worm gear threads and on the load carrying surfaces of the lifting screw thread, the load carrying thickness of the worm gear thread will be reduced. This wear will create a gap at point (B) and provide backlash equal to the wear on the threads.

Under compression load, the lifting screw will no longer be in contact with the lower thread surface of the anti-backlash nut. Under this condition, backlash will be present when a tension load is applied. The anti-backlash feature can be maintained simply by adjusting the shell cap until the desired amount of backlash is achieved.

To avoid binding and excessive wear do not adjust lifting screw backlash to less than 0.025mm (0.001"). This will reduce the calculated separation (C) between the antibacklash nut and worm gear and will reduce the backlash between the worm gear threads and the lifting screw to the desired minimum value.

Column Strength of the Screw Jack


Column strength of a screw is determined by the relationship between the screw length and its diameter. For column strength charts consult product literature or Power Jacks.

Side Loads on a Screw Jack

Screw jacks are designed primarily to move and position loads and any side loads (loads not acting axially on lead screw) should be avoided. The units will withstand some side loads, depending on the diameter of the lifting screw and the extended length of the lifting screw. Where side loads are present, the loads should be guided and the guides, rather than the screw jacks, should take the side loads - particularly when long raises are involved. Even a small side load can exert great force on the housings and bearings and increase the operating torque and reduce the life expectancy.

Allowable Duty Cycle of Screw Jack

Because of the efficiency of conventional worm gear screw jacks, the duty cycle is intermittent at rated load. At reduced loading, the duty cycle may be increased. Ball screw jacks are more efficient than machine screw jacks and so can provide a higher duty cycle. In addition Power Jacks have special designs for high duty cycle screw jacks. For detailed analysis consult Power Jacks Ltd.

Maximum Operating Temperatures For E-Series Screw Jack

Normal operation at ambient temperatures of up to 90°C. Operations above 90°C will require special lubricants. For temperatures above 90°C, the life of even special lubricants is limited. Therefore consult Power Jacks on your application. For temperatures above 90°C, advise Power Jacks of full particulars of the duration of such temperatures. Power Jacks suggest that a lubricant manufacturer be consulted for type of grease and lubrication schedule. As a general rule, the screw jack unit should be shielded to keep ambient temperatures to 90°C or less.

Minimum Temperature For E-Series Screw Jacks

With the standard lubricant and materials of construction, the screw jacks are suitable for use at sustained temperatures of -20°C. Below -20°C, low temperature lubricant should be used and no shock loads are present. Power Jacks application engineers must be consulted in these instances for a recommendation. Screw Jacks with standard material of construction and lubrication may be safely stored at temperatures as low as -55°C.

Thermal / Heat Build-Up in a Screw Jack as it is operated

The duty cycle, the length of the screw, the magnitude of the load, and the efficiency of the screw jack all have a direct influence on the amount of heat generated within the screw jack. Long lifts can cause serious overheating. Note that Power Jacks have special designs with higher thermal capacities than conventional worm gear screw jacks (consult Power Jacks for more details).

Screw Jacks to Pivot a Load

A screw jack can be built to pivot a load by two methods:

1. Double Clevis Screw Jack

The screw jack can be furnished with a clevis at both ends (commonly referred to as a double clevis screw jack). The bottom clevis is welded to the bottom end of an extra strong cover pipe, which is fitted to the base of the screw jack. This cover pipe still performs its primary function of encasing the lifting screw in its retracted portion. The clevis ends can be replaced with other pivot options such as Fork End or Rod End.

2. Clevis - Trunnion Mounting

The screw jack is fitted with the pivot end fitting (e.g. Clevis, Fork or Rod End) on the lead screw and a trunnion mount adapter is bolted to the screw jacks base plate.

The design of the structure in which these types of screw jacks are to be used must be constructed so that screw jack can pivot at both ends. Use only direct compression or tension loads, thereby eliminating side load conditions.

Corrosion Resistant Properties

Screw Jacks can be supplied with alternative materials and/or paint specifications for high corrosive areas. These options include stainless steel, chrome plating, electro-nickel plating, epoxy paint, etc. Check the unit specification is suitable before installation.

Using Screw Jacks within a Rigid Structure or Press

Power Jacks recommend that the screw jack selected has a greater capacity than the rated capacity of the press or of the load capacity of the structure. We also recommend that a torque clutch or similar device be used to prevent overloading of the screw jack unit. Unless these precautions are taken, it is possible to overload the screw jack without realising it.

Screw Jack Drift after Drive Motor is Switched Off

The screw jack will drift after the motor drive is switched off unless a brake of sufficient capacity is used to prevent it. The amount of drift will depend upon the load on the screw jack and the inertia of the rotor in the motor.

For machine screw jacks with no load, the amount of drift will depend upon the size and speed of the motor. For example, a 1500 RPM input directly connected to a screw jack without a load will give on average 35mm to 60mm of drift; a 1000 RPM input will give about 1/2 as much drift. Note that the drift varies as the square of the velocity (RPM). The drift of the screw jacks screw can be controlled by using a magnetic brake on the motor. Variations of drift will also be seen if the motor drives the screw jack via a reduction gearbox.

Screw Jacks Operation where Vibration is Present

Screw Jacks will operate in areas with vibration, however the vibration may cause the lead screw to "creep" or "inch" under load. For applications involving slight vibration, select the higher of the worm gear ratios. If considerable vibration is present, use a motor equipped with a magnetic brake, which will prevent the screw jack from creep and/or back-driving.

Use of Screw Jacks Fitted With Emergency Stop Disc

To prevent over travel of the lead screw, a stop disc or nut can be fitted to a screw jack that is hand operated. It should not be used as a full power stop.

Use of Screw Jacks Fitted With Emergency Stop Nut

For motor driven units, it is possible for the full capacity of the screw jack or even a greater force (depending on the power of the motor) to be applied against the stop. These stops are called "full power stop nuts". They must only be used as an emergency device and if such a condition occurs, an assessment made to discover why it happened in order to carry out preventative action. If the full power stop nut is used at full load in an emergency it might be driven into the unit jamming so tightly that it must be disassembled in order to free it.

It is recommended that external stops are fitted where possible, however they must only be used as a last resort (Note - limit switches are one possible solution to constrain screw jack movement safely - consult Power Jacks for system advice). Under ideal conditions where a slip clutch or torque limiting device is used, a stop pin or stop nut may be used - but Power Jacks should be consulted.

Screw Jack System Arrangements

Perhaps the greatest single advantage of Power Jacks screw jacks is that they can be linked together mechanically, to lift, lower, move or position in unison. Typical mechanical system arrangements link 2, 4, 6 or 8 screw jacks together and are driven by one motor. As an alternative, screw jacks can be individually driven by electric motors and with suitable feedback devices, such as encoders, be synchronised electronically by a control system.

Connecting Screw Jacks in Series

The number of screw jacks that can be connected in series is limited by input torque requirements on the first worm shaft in the line. For the C & E-Series the torque on the worm shaft of the first screw jack should not exceed 300% of its rated full load torque (this does not include the 200kN screw jacks which are rated at 150%).

Efficiency of a Multiple Screw Jack System

In addition to individual device efficiencies, the efficiency of the screw jack arrangement must be taken into consideration. The arrangement efficiency allows for misalignment due to slight deformation of the structure under load, for the losses in couplings, bearings, and for a normal amount of misalignment in positioning the screw jacks and gearboxes. For efficiency values consult Power Jacks product literature or engineers.

Number of Screw Jacks in System	2	3	4	6-8
Jacking System Efficiency	0.95	0.90	0.85	0.80

Screw Jack Fitted with 3rd Party Accessories

If your screw jack is fitted with a device not manufactured by Power Jacks then please consult the provided manual for this device.

168 **Operation**

Installation and Maintenance Tips

The following installation and maintenance tips are for the C & E-Series, Metric machine screw and ball screw jacks models. General care should be taken to ensure that equipment is sufficient to handle the load.

- 1. The structure on which the screw jack unit is mounted should have ample strength to carry the maximum load, and be rigid enough to prevent undue deflection or distortion of the screw jack unit supporting members.
- 2. It is essential that the screw jack be carefully aligned during installation so that the lifting screws are vertically true and the connecting shafts are exactly in line with the worm shafts. After the screw jack, shafting, and gear boxes are coupled together, it should be possible to turn the main drive shaft by hand. If there are no signs of binding or misalignment, the jacking system is then ready for normal operation.
- 3. The screw jack should have a greater stroke than is needed in the screw jack installation. If it is necessary to operate the screw jack at the extreme limits of travel, it should be done with caution.

CAUTION: Do not allow screw travel below catalogue closed height of the screw jack or serious damage to internal mechanism may result. Refer to table specifications for closed height of respective units.

- 4. The input power should not exceed the power rating shown in the specification table. Maximum RPM should not exceed 1800.
- 5. The lifting screw should not be permitted to accumulate dust and grit on the threads. If possible, lifting screws should be returned to closed position when not in use.
- 6. The ball screws in the ball screw jacks should be checked periodically for excessive backlash and spalling of raceways. A periodic check of backlash of the lifting screw thread is recommended to check wear of the worm gear internal threads on the machine screw jack models. Backlash in excess of 50% of the thread thickness indicates the need to replace the worm gear.
- 7. Unless otherwise specified, screw jacks are shipped packed with grease which should be sufficient for one month of normal operation. For normal operation, the screw jacks should be lubricated about once a month, using one of the following extreme pressure greases or their equivalent:

Shell	Gadus S2V220AC2 (Alvania WR2)
BP	Energrease LC2
Castrol	Spheerol EPL2
Mobil	Mobilux EP2

For severe conditions, the screw jacks should be lubricated more frequently, using one of the above greases (daily to weekly depending on conditions). If duty is heavy, an automatic lubrication system is strongly recommended. If ambient temperatures exceed 90°C (194°F) consult Power Jacks.

8. On ball screw jack applications, periodically lubricate the exposed ball screw grooves with a cloth dampened with a good grade 10W30 oil for most applications. An instrument grade oil should be used in dirty and heavy duty environments, and bearing grease for environments at extremely high temperatures. Extreme temperature and other environmental conditions should be referred to Power Jacks for recommended lubricating procedures.

CAUTION: Where ball screws are not protected from airborne dirt, dust, etc., bellows boots should be used. Inspect frequently at regular intervals to be certain a lubricating film is present. Ball screws should never be run dry.

9. Due to the high efficiency of the ball screw jack design, a brake must be used in conjunction with motor selected to position the screw jack.

Useful Formulae for Screw Jack Calculations

Lifting Screw Lead

Lifting Screw lead (mm) = Screw Pitch (mm) *Number of Starts on Lifting Screw

Calculation of the Linear Speed

When the worm shaft speed is known, the linear speed can be determined with this formula:

Linear Speed (mm/min) =

RPM of Worm Shaft x Lifting Screw Lead (mm) Gear Ratio

or alternatively

Linear Speed (mm/min) =

RPM of Worm Shaft

Turns of Worm for 1mm Travel

Calculation of Screw Jack Input Torque

Input Torque (Nm) =

Load (kN) x Lifting Screw Lead (mm) 2 x π x Efficiency x Gear Ratio

or alternatively

Input Torque (Nm) =

Input Power (kW) x 9550 Input Speed (rpm)

Calculation of Screw Jack Input Power

Input Power (kW) = Load (kN) x Lifting Screw Lead (mm) x Input Speed (rpm) 60000 x Efficiency x Gear Ratio

or alternatively

Input Power (kW) =

Load (kN) x Linear Speed (mm/min) 60000 x Efficiency **Calculation Formulae**

Useful Formulae for Screw Jack Calculations

Power	Metric	Imperial
Lifting Motion	$P = \frac{m x g x v}{\eta x 1000}$	P = ŋ x 33000
Linear Motion	$P = \frac{F_{R} \times v}{1000}$	$P = \frac{F_{R} \times v}{33000}$
	F _R = μ x m x g	F _R = µxw
Rotary Motion	P = <u>T x n</u> 9550	P=63000
Torque		
	T = F _R xr	T = Txr
Linear Motion	T = <u>P x 9550</u> n	T = <u>P x 6300</u> n

Symbol	Quantity	Metric Units	Imperial Units
Р	Power	kW	HP
Т	Torque	Nm	lbf.in
F _R	Resistance due to Friction	Ν	lbf
m	Mass	kg	-
W	Weight	-	lb
g	Gravitational Acceleration	9.81 ms ⁻²	32.185 ft ⁻²
V	Velocity	ms ⁻¹	ft/min
η	Efficiency	decimals	decimals
μ	Coefficient of Friction	decimals	decimals
n	Rotational Speed	rpm	rpm
r	Radius	m	in

POWERJACKS

POWERJACKS -

Useful Formulae for Screw Jack Calculations

Moment of Inertia	Metric	Imperial
Solid Cylinder	$J = \frac{1}{2} x m x r_{od}^2$	$WK^2 = \frac{1}{2} \times W \times r_{od}^2$
Hollow Cylinder	$J = \frac{1}{32} \times \overline{\omega} \times \rho \times d_{od}^{4}$	WK ² = $\frac{\varpi}{32}$ r x l x d _{od} 4
	J = 0.098 x ρ x I x d _{od} 4	$WK^2 = 0.1 \times \rho \times I \times d_{od}^4$
Hollow Cylinder	$J = \frac{1}{2} x m x \{r_{od}^2 - r_{id}^2\}$	WK ² = $\frac{1}{2}$ x W x (r _{od} 2 - r _{id} 2)
	$J = \frac{1}{32} \times \omega \times \rho \times I \times [d_{od}4 - d_{id}4]$	WK ² = $\frac{\varpi}{32}$ x ϖ x ρ x I x (d _{od} 4 -d _{id} 4)

Acceleration or Braking Time

T _{acc=}	Jxn	T _{acc=}	WK ² x n
	9.55 x T _{acc}		308 x T _{acc}

Symbol	Quantity	Metric Units	Imperial Units
J	Moment of Inertia (metric)	kgm ²	-
WK ²	Moment of Inertia (imperial)	-	lb.ft ²
T _{acc}	Torque due to Acceleration or Braking	Nm	lbf.ft
m	Mass	kg	-
W	Weight	m	lb
g	Outer Radius	m	ft
V	Internal Radius	m	ft
η	Outer Diameter	m	ft
μ	Internal Diameter	m	ft
n	Density	kg/m ³	kg/m ³
r	Time for Acceleration or Braking	S	S
r	Rotational Speed	rpm	rpm

Power Jacks specialises in the design and manufacture of precision linear actuation, positioning and lifting equipment.

Our products are supplied globally across many sectors including Industrial Automation, Energy, Transport, Defence and Civil.

Power Jacks Ltd Kingshill Commercial Park Prospect Road, Westhill Aberdeenshire AB32 6FP Scotland (UK) Tel: +44 (0)1224 968968

www.powerjacks.com sales@powerjacks.com

PJ-SJB-E-EN-04b

All information in this document is subject to change without notice. All rights reserved by Power Jacks Limited. May not be copied in whole or in part. ©Power Jacks Limited 2019, Aberdeenshire, Scotland, United Kingdom.

